SortedSet如何实现多维度排序

说明:本次实践基于Redis版本3.2.11。

关于SortedSet

首先,我们都知道Redis的SortedSet是可以根据score进行排序的,以手机应用商店的热门榜单排序为例,根据下载量倒序排列,其简单用法如下:

127.0.0.1:6379> zadd TopApp 12000000 wechat
(integer) 1
127.0.0.1:6379> zadd TopApp 8000000 taobao 10000000 alipay
(integer) 2
127.0.0.1:6379> ZREVRANGE TopApp 0 -1
1) "wechat"
2) "alipay"
3) "taobao"

对SortedSet做一下简单总结:

  1. 默认升序排列,即通过命令ZRANGE实现;如果要按照降序排列,需要通过命令ZREVRANGE实现;
  2. 当score即得分一样时,按照字典顺序对member进行排序,字典排序用的是二进制,它比较的是字符串的字节数组,所以实际上是比较ASCII码。

简单用法介绍完后,接下来给出几种方案,介绍如何利用Redis实现多维度排序。同样的,还是以手机应用商店的热门榜单排序为例:首先按照APP的下载量倒序排序,如果下载量一样,则按照最后更新时间倒序排列。

方案1

介绍的第一个方案,并不需要依赖SortedSet,它的实现非常简单,但是需要产品做简单的妥协,即不能实时更新榜单。其实现方案是:定时每隔1分钟(可以由产品确定时间间隔)通过SQL(select * from tb_apps order by download_count desc, updated_time desc limit 300)或者其他方式计算热门榜单,然后把TOP300用List结构保存到缓存中。

说明:根据应用商店的用户行为分析,真实用户很少会预览10页以后的数据,即使有这种用户,我们也可以忽略掉。所以只需要将总计10页,即10x30=300个APP信息用List结构保存即可。分页取数据时,通过lrange命令即可轻松实现。

这种方案虽然简单,但是非常有用。即使不能做到实时,但是并没有影响用户体验。在项目初期需要快速发布,是一个比较推荐的做法。

方案2

方案2就是本文重点介绍的利用SortedSet实现多维度排序。关注公众号:【阿飞的博客】,更多原创首发!

介绍方案之前,我们再看一下SortedSet排序因子score,它是一个双精度64位的浮点型数字字符串。+inf和-inf都是有效值,能包括的整数范围是-(2^53) 到 +(2^53),或者说是-9007199254740992 到 9007199254740992。

那么,我们如何实现多维度排序呢?答案是构造一个特殊的score。以本文案例为例,排序影响因子是下载量和更新时间,那么我们可以构造一个这样特殊的浮点类型的score:整数部分就是下载量,小数部分就是最后更新时间戳

talk is cheap,show me the code。假设有5个app的下载量和最后更新时间分别如下(说明:更新时间只精确到秒):

wechat-下载量:12000000,最后更新时间:1564022201;其score为:12000000.1564022201
qq-下载量:12000000,最后更新时间:1564022222;其score为:12000000.1564022222
tiktok-下载量:9808900,最后更新时间:1563552267;其score为:9808900.1563552267
taobao-下载量:11006600,最后更新时间:1564345601;其score为:11006600.1564345601
alipay-下载量:11006600,最后更新时间:1564345600;其score为:11006600.1564345600

接下来,我们通过如下命令将这5个APP用SortedSet数据类型保存到Redis中:

zadd TopApp 12000000.1564022201 wechat 12000000.1564022222 qq 9808900.1563552267 tiktok 11006600.1564345601 taobao 11006600.1564345600 alipay

保存后,我们看一下排序结果是否符合我们的预期:

127.0.0.1:6379> zrevrange TopApp 0 -1
1) "qq"
2) "wechat"
3) "taobao"
4) "alipay"
5) "tiktok"

写在最后

是不是很完美?

还不完美,这种讨巧的方式只能实现二维排序。如果有三维排序,四维排序呢?这里笔者提供一种实现参考,即自定义得分权重计算公式,例如:downloadCount*1000+updatedTime;,这种实现无论排序维度多少都搞得定,需要注意的是,在具体实现时一定注意不要让score溢出:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345