ConsumeQueue的作用
上一篇文章讲到Broker在收到消息后,通过MessageStore
将消息存储到commitLog
中,但是consumer在消费消息的时候是按照topic+queue的维度来拉取消息的。为了方便读取,MessageStore
将CommitLog
中消息的offset按照topic+queueId划分后,存储到不同的文件中,这就是ConsumeQueue
文件组织方式
回顾一下数据结构图中ConsumeQueue
相关的部分。
底层储存跟
CommitLog
一样使用MappedFile
,每个CQUnit
的大小是固定的,存储了消息的offset、消息size和tagCode。存tag是为了在consumer取到消息offset后时候先根据tag做一次过滤,剩下的才需要到CommitLog
中取消息详情。之前讲过,
MessageStore
通过ReputMessageService
来将消息的offset写道ConsumeQueue
中,我们看下这部分代码实现
ReputMessageService
这个Service是一个单线程的任务,一直循环的调用doReput()
方法:
private boolean isCommitLogAvailable() {
return this.reputFromOffset < DefaultMessageStore.this.commitLog.getMaxOffset();
}
private void doReput() {
//1、判断commitLog的maxOffset是否比上次读取的offset大
for (boolean doNext = true; this.isCommitLogAvailable() && doNext; ) {
if (DefaultMessageStore.this.getMessageStoreConfig().isDuplicationEnable()
&& this.reputFromOffset >= DefaultMessageStore.this.getConfirmOffset()) {
break;
}
//2、从上次的结束offset开始读取commitLog文件中的消息
SelectMappedBufferResult result = DefaultMessageStore.this.commitLog.getData(reputFromOffset);
if (result != null) {
try {
this.reputFromOffset = result.getStartOffset();
for (int readSize = 0; readSize < result.getSize() && doNext; ) {
//3、检查message数据完整性并封装成DispatchRequest
DispatchRequest dispatchRequest =
DefaultMessageStore.this.commitLog.checkMessageAndReturnSize(result.getByteBuffer(), false, false);
int size = dispatchRequest.getMsgSize();
if (dispatchRequest.isSuccess()) {
if (size > 0) {
//4、分发消息到CommitLogDispatcher,1)构建索引; 2)更新consumeQueue
DefaultMessageStore.this.doDispatch(dispatchRequest);
//5、分发消息到MessageArrivingListener,唤醒等待的PullReqeust接收消息,Only Master?
if (BrokerRole.SLAVE != DefaultMessageStore.this.getMessageStoreConfig().getBrokerRole()
&& DefaultMessageStore.this.brokerConfig.isLongPollingEnable()) {
DefaultMessageStore.this.messageArrivingListener.arriving(dispatchRequest.getTopic(),
dispatchRequest.getQueueId(), dispatchRequest.getConsumeQueueOffset() + 1,
dispatchRequest.getTagsCode(), dispatchRequest.getStoreTimestamp(),
dispatchRequest.getBitMap(), dispatchRequest.getPropertiesMap());
}
//5、更新offset
this.reputFromOffset += size;
readSize += size;
if (DefaultMessageStore.this.getMessageStoreConfig().getBrokerRole() == BrokerRole.SLAVE) {
DefaultMessageStore.this.storeStatsService
.getSinglePutMessageTopicTimesTotal(dispatchRequest.getTopic()).incrementAndGet();
DefaultMessageStore.this.storeStatsService
.getSinglePutMessageTopicSizeTotal(dispatchRequest.getTopic())
.addAndGet(dispatchRequest.getMsgSize());
}
} else if (size == 0) {
//6、如果读到文件结尾,则切换到新文件
this.reputFromOffset = DefaultMessageStore.this.commitLog.rollNextFile(this.reputFromOffset);
readSize = result.getSize();
}
} else if (!dispatchRequest.isSuccess()) {
//7、解析消息出错,跳过。commitLog文件中消息数据损坏的情况下才会进来
if (size > 0) {
log.error("[BUG]read total count not equals msg total size. reputFromOffset={}", reputFromOffset);
this.reputFromOffset += size;
} else {
doNext = false;
if (DefaultMessageStore.this.brokerConfig.getBrokerId() == MixAll.MASTER_ID) {
log.error("[BUG]the master dispatch message to consume queue error, COMMITLOG OFFSET: {}",
this.reputFromOffset);
this.reputFromOffset += result.getSize() - readSize;
}
}
}
}
} finally {
//8、release对MappedFile的引用
result.release();
}
} else {
doNext = false;
}
}
}
/**
* 消息分发
*/
public void doDispatch(DispatchRequest req) {
for (CommitLogDispatcher dispatcher : this.dispatcherList) {
dispatcher.dispatch(req);
}
}
- 第1步,每次处理完读取消息后,都将当前已经处理的最大offset记录下来,下次处理从这个offset开始读取消息
- 第2步,从commitLog文件中读取消息详情
- 第4步,分发读取到的消息,
MessageStore
在初始化的时候会往dispatcherList中添加两个Dispatcher.
this.dispatcherList = new LinkedList<>();
//consumeQueue构建Dispatcher
this.dispatcherList.addLast(new CommitLogDispatcherBuildConsumeQueue());
//索引更新Dispatcher
this.dispatcherList.addLast(new CommitLogDispatcherBuildIndex());
具体Dispatcher的处理逻辑,我们下面详细说
- 第8步,在通过commitLog读取消息时,不会把消息数据复制到堆内存中,只是返回文件映射的byteBuffer,所以MappedFile记录了有多少个引用,在数据使用完后需要释放。
Dispatcher构建ConsumeQueue
CommitLogDispatcherBuildConsumeQueue
实现比较简单,直接调用的MessageStore
的接口
class CommitLogDispatcherBuildConsumeQueue implements CommitLogDispatcher {
@Override
public void dispatch(DispatchRequest request) {
final int tranType = MessageSysFlag.getTransactionValue(request.getSysFlag());
switch (tranType) {
/** 对于非事务消息和commit事务消息 */
case MessageSysFlag.TRANSACTION_NOT_TYPE:
case MessageSysFlag.TRANSACTION_COMMIT_TYPE:
DefaultMessageStore.this.putMessagePositionInfo(request);
break;
case MessageSysFlag.TRANSACTION_PREPARED_TYPE:
case MessageSysFlag.TRANSACTION_ROLLBACK_TYPE:
break;
}
}
}
MessageStore
中的实现:
public void putMessagePositionInfo(DispatchRequest dispatchRequest) {
//找到对应的ComsumeQueue文件
ConsumeQueue cq = this.findConsumeQueue(dispatchRequest.getTopic(), dispatchRequest.getQueueId());
cq.putMessagePositionInfoWrapper(dispatchRequest);
}
前面已经讲过consumeQueue的数据存储结构,每个topic+queueId
对应一个ConsumeQueue
,每个ConsumeQueue
包含一系列MappedFile
。所以,这里第一步就是获取对应的ConsumeQueue
,如果不存在的话就会新建一个。后面就是调用CQ的put方法:
public void putMessagePositionInfoWrapper(DispatchRequest request) {
//1、写入重试次数,最多30次
final int maxRetries = 30;
//2、判断CQ是否是可写的
boolean canWrite = this.defaultMessageStore.getRunningFlags().isCQWriteable();
for (int i = 0; i < maxRetries && canWrite; i++) {
long tagsCode = request.getTagsCode();
if (isExtWriteEnable()) {
//3、如果需要写ext文件,则将消息的tagscode写入
ConsumeQueueExt.CqExtUnit cqExtUnit = new ConsumeQueueExt.CqExtUnit();
cqExtUnit.setFilterBitMap(request.getBitMap());
cqExtUnit.setMsgStoreTime(request.getStoreTimestamp());
cqExtUnit.setTagsCode(request.getTagsCode());
long extAddr = this.consumeQueueExt.put(cqExtUnit);
if (isExtAddr(extAddr)) {
tagsCode = extAddr;
} else {
log.warn("Save consume queue extend fail, So just save tagsCode! {}, topic:{}, queueId:{}, offset:{}", cqExtUnit,
topic, queueId, request.getCommitLogOffset());
}
}
//4、写入文件
boolean result = this.putMessagePositionInfo(request.getCommitLogOffset(),
request.getMsgSize(), tagsCode, request.getConsumeQueueOffset());
if (result) {
//5、记录check point
this.defaultMessageStore.getStoreCheckpoint().setLogicsMsgTimestamp(request.getStoreTimestamp());
return;
} else {
...
...
}
}
...
this.defaultMessageStore.getRunningFlags().makeLogicsQueueError();
}
- 第3步,将tagcode和bitMap记录进CQExt文件中,这个是一个过滤的扩展功能,采用的bloom过滤器先记录消息的bitMap,这样consumer来读取消息时先通过bloom过滤器判断是否有符合过滤条件的消息
- 第4步,将消息offset写入CQ文件中,这边代码如下:
private boolean putMessagePositionInfo(final long offset, final int size, final long tagsCode,
final long cqOffset) {
if (offset <= this.maxPhysicOffset) {
return true;
}
//一个CQUnit的大小是固定的20字节
this.byteBufferIndex.flip();
this.byteBufferIndex.limit(CQ_STORE_UNIT_SIZE);
this.byteBufferIndex.putLong(offset);
this.byteBufferIndex.putInt(size);
this.byteBufferIndex.putLong(tagsCode);
final long expectLogicOffset = cqOffset * CQ_STORE_UNIT_SIZE;
//获取最后一个MappedFile
MappedFile mappedFile = this.mappedFileQueue.getLastMappedFile(expectLogicOffset);
if (mappedFile != null) {
//对新创建的文件,写将所有CQUnit初始化0值
if (mappedFile.isFirstCreateInQueue() && cqOffset != 0 && mappedFile.getWrotePosition() == 0) {
this.minLogicOffset = expectLogicOffset;
this.mappedFileQueue.setFlushedWhere(expectLogicOffset);
this.mappedFileQueue.setCommittedWhere(expectLogicOffset);
this.fillPreBlank(mappedFile, expectLogicOffset);
log.info("fill pre blank space " + mappedFile.getFileName() + " " + expectLogicOffset + " "
+ mappedFile.getWrotePosition());
}
if (cqOffset != 0) {
long currentLogicOffset = mappedFile.getWrotePosition() + mappedFile.getFileFromOffset();
if (expectLogicOffset < currentLogicOffset) {
log.warn("Build consume queue repeatedly, expectLogicOffset: {} currentLogicOffset: {} Topic: {} QID: {} Diff: {}",
expectLogicOffset, currentLogicOffset, this.topic, this.queueId, expectLogicOffset - currentLogicOffset);
return true;
}
if (expectLogicOffset != currentLogicOffset) {
LOG_ERROR.warn(
"[BUG]logic queue order maybe wrong, expectLogicOffset: {} currentLogicOffset: {} Topic: {} QID: {} Diff: {}",
expectLogicOffset,
currentLogicOffset,
this.topic,
this.queueId,
expectLogicOffset - currentLogicOffset
);
}
}
this.maxPhysicOffset = offset;
//CQUnit写入文件中
return mappedFile.appendMessage(this.byteBufferIndex.array());
}
return false;
}
写文件的逻辑和写CommitLog的逻辑是一样的,首先封装一个CQUnit,这里面offset占8个字节,消息size占用4个字节,tagcode占用8个字节。然后找最后一个MappedFile,对于新建的文件,会有一个预热的动作,写把所有CQUnit初始化成0值。最后将Unit写入到文件中。
总结
ConsumeQueue
文件数据生成的整个步骤就讲到这里了。Consumer来读取文件的时候,只要指定要读的topic和queueId,以及开始offset。因为每个CQUnit的大小是固定的,所以很容易就可以在文件中定位到。找到开始的位置后,只需要连续读取后面指定数量的Unit,然后根据Unit中存的CommitLog
的offset就可以到CommitLog
中读取消息详情了。