估计的置信度

1 估计的置信度

在大多数的研究中,我们无法获取研究对象的总体数据,或者能获取但是成本非常大。实际情况中,我们往往是通过抽样的方法,在总体中进行随机抽样。根据获取的这部分样本数据去推动总体的一些属性。比如通过抽样人群的平均身高去估计所有人群的平均身高,通过抽样人群中的男女比例,去估计我国当前的男女比例状况。
抽样样本量是直接影响到最终的估计准确度,所以这一章节,先来介绍下如何判断一种估计方法准确与否。

统计估计

统计中估计的方法有两类:点估计,区间估计。 比如问男性平均身高是多少,167cm就是一个点估计,160-170就是区间估计。

置信区间

根据前面介绍的常用的三种估计类型,其置信区间的计算方式也有所不同。

1. 比例的置信区间

例:假设抛掷一枚不均匀的硬币,其正面朝上的真实概率P位置,每次实验结果只有X=1表示正面,X=0表示反面两种结果。现在实验了n次,其中正面向上个数是k次,想估计下这个硬币正面朝上的概率是多少。

如果用点估计,自然的会用频率\hat p=\frac{k}{n}去估计真实的频率。而区间估计的主要步骤如下:

E(\hat p)=p, V(\hat p)=p(1-p)/n
所以有\hat p - N(p, p(1-p)/n)
\frac{\hat p -p}{\sqrt\frac{p(1-p)}{n}} - N(0,1)

经典的Wald区间

Wald估计是用样本比例替代整体比例,比例估计的置信区间是 \hat p \pm z_{1-\alpha/2} \sqrt\frac{\hat p(1-\hat p)}{n}

以上的置信区间是有个前提的:样本量比较大的时候,np>5且n(1-p)>5,二项分布才会近似是正态分布。

在样本量比较小,或者是真实的p值接近0或者1的时候,估计的就不是很准确了。

小样本的比例估计

在实际的问题中,这种情况也是经常存在的。以搜索为例,一个具体的搜索策略上线前,通常都会对实验组和对照组进行一些人工评估。因为人力成本问题,一般是评估100或200qu。可能里面的good或者bad的case占比非常少,那么在估计good或badcase的比例的时候置信度就不是很高。

下面介绍几种常用的修正的区间估计

(0) 精确区间
所谓精确区间,其实就是不对齐分布进行近似,而是直接使用原始的真实分布。我们知道正面朝上的个数k其真实分布是二项分布。这个一开始是Clopper和Pearson在1934年研究出来的,所以也叫做C-P 置信区间

P(x=s) =C_n^s p^s(1-p)^{n-s}

image.png

最终可以反解出来这个置信下限和置信上限,这里就不在列出具体公式了。

(1)Wilson区间/Wald矫正区间

注意Wilson和wald两种方法上的区别,wald在设置置信区间的时候是简化了问题,用样本比例近似了真实的比例。wilson认为\frac{\hat p -p}{\sqrt\frac{p(1-p)}{n}} - N(0,1)

简单的推理过程如下


image.png

最终推导出来的置信区间是


image.png

(2)wald矫正区间

上述的置信区间有一个简单的计算方式-加2法,即在数据中增加2个成功案例和2个失败案例,然后再用传统的wald区间估计方法

这是因为


image.png

2.等级量表和连续性数据的置信区间

我们做置信区间或者参数估计,最终目的是希望通过样本的数据去获得总体的信息。常见的就是对总体集中趋势的估计,而这种”集中趋势“根据数据本身的分布情况,可能会采取均值、中位数、众数做为其估计

(1)基于均值的

基于均值的估计,一般是在假设其分布比较对称的时候,均值是很好的对”集中趋势“的度量。根据样本量的大小,均值的置信区间可以用t分布或者z分布。

(2)基于中位数的

很多时候,数据本身的分布是不对称的,比如用户的网页结果的停留时长、用户点击的位置分布等。这个时候均值就不是一个很好的对总体集中趋势的估计了。实际中用的较多的是中位数。

但是中位数本身也存在一些问题。

  • 变异性。中位数可以抵挡异常值对整体分布的影响,但是当从一个连续分布中抽样样本时候,中位数要比均值的变异性更大。均值可能相对比较稳定的,但是中位数可能跳动会很大。
  • 偏倚性。平均值的一个好的性质就是估计的无偏性,

(3) 基于几何均值的

可以参考Sauro and Lewis2010年的一篇论文。

这里简单说下论文的主要结论吧:

  • 样本中位数是总体中位数的有偏估计
  • 作者主要比较了,均值,中位数,几何均值,调和平均值,截断均值(去掉最高和最低的topN)。 通过蒙特卡洛模拟的方法,对于n>25时候,样本中位数是个比较好的估计,对于n<25的时候,几何均值是一个比较好的估计
  • 中位数的置信区间

特定类型的数据(比如任务时长,用户在搜索结果的停留时间),要找到中位数的置信区间,中位数即p=0.5的那个分界点。其实相当于要找到p的置信区间。
\hat p \pm z_{1-\alpha/2} \sqrt\frac{\hat p(1-\hat p)}{n}

得到置信区间[p1, p2]之后,去找到数据中位于[p1,p2]分界点的数据点即为中位数的置信区间了。

参考资料

维基百科 https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval

https://indico.ihep.ac.cn/event/6182/contribution/4/material/slides/0.pdf

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容