随机数

笔者近期使用了随机数做抽样,本来是一个简单的应用,但是我想要探究一下随机数的生成原理,就看了一些网上的相关文章,总结如下。

首先贴一段是用c# 的random 产生随机数的代码,这是应用层面。

var rand = new Random();

int value1 = rand.Next(1, maxids + 1) # 取1-maxids的id int类型随机

double value2 = rand.NextDouble() #取0-1的double类型的随机

下面说原理层面。

抽样过程中,怎样在大量的样本集合中抽取定量样本呢,肯定要用到随机数.

如果要给随机数下一个定义, 那就是可以循环计数的序列。使用递归的方法,下一个数的生成是基于上一个随机数的结果,还要保证生成数的均匀分布。

随机数->计时器->递归.

在数学层面上讲,随机数就是一种按照某种计算方法生成数而保证随机性的方法.

例子

中央随机数生成器

种子: 随机序列初始化的值.

    rnd.today=new Date();

    rnd.seed=rnd.today.getTime();

    function rnd() {

      rnd.seed = (rnd.seed*9301+49297) % 233280;

      return rnd.seed/(233280.0);

    };

    function rand(number) {

      return Math.ceil(rnd()*number);

    };

注意,被乘的数往往是质数,用来保证自我重复循环空间的最大化.

平方取中法

产生0/1均匀分布的随机数; 伪随机数.

此法开始取一个2s位的整数[10-100以内的整数],称为种子,将其平方,得4s位整数(不足4s位时高位补0),然后取此4s位的中间2s位作为下一个种子数,并对此数规范化(即化成小于1的2s位的实数值),即为第一个(0,1)上的随机数。以此类推,即可得到一系列随机数。

若取种子r =11,那么 取r的平方 r^2 = 121, 不足4s位高位补0,就是0121, 中间2s位为12,规范化后为0.12,取round(0.12) 即为0.,下一个就从12算起.【笔者理解】

如果一般生成的是均匀分布,那么如何变成高斯分布呢?

这是笔者从一篇博客中借鉴的如何从均匀分布变成高斯分布的方法,可供参考,理论证明忽略。^_^. 如果大家感兴趣,可以自己试着推导证明过程,但我认为是需要一定的数学功底的。

 #include <stdlib.h>

#include <stdio.h>

 #define PI 3.141592654double

  double gaussrand( )

 {

static double U, V;

static int phase = 0;

double z;

 if(phase == 0)

 {

U = rand() / (RAND_MAX + 1.0);

 V = rand() / (RAND_MAX + 1.0);

 Z = sqrt(-2.0 * log(U))* sin(2.0 * PI * V);

}

 else

   {

  Z = sqrt(-2.0 * log(U)) * cos(2.0 * PI * V);

   }

phase = 1 - phase;

 return Z;

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,194评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,058评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,780评论 0 346
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,388评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,430评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,764评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,907评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,679评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,122评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,459评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,605评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,270评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,867评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,734评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,961评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,297评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,472评论 2 348

推荐阅读更多精彩内容