三通通道彩色图
/**
* Takes an INDArray containing an image loaded using the native image loader
* libraries associated with DL4J, and converts it into a BufferedImage.
* The INDArray contains the color values split up across three channels (RGB)
* and in the integer range 0-255.
*
* @param array INDArray containing an image
* @return BufferedImage
*/
private BufferedImage imageFromINDArray(INDArray array) {
long[] shape = array.shape();
long height = shape[2];
long width = shape[3];
BufferedImage image = new BufferedImage((int)width, (int)height, BufferedImage.TYPE_INT_RGB);
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
int red = array.getInt(0, 2, y, x);
int green = array.getInt(0, 1, y, x);
int blue = array.getInt(0, 0, y, x);
//handle out of bounds pixel values
red = Math.min(red, 255);
green = Math.min(green, 255);
blue = Math.min(blue, 255);
red = Math.max(red, 0);
green = Math.max(green, 0);
blue = Math.max(blue, 0);
image.setRGB(x, y, new Color(red, green, blue).getRGB());
}
}
return image;
}
单通道灰度图
代码引自:https://github.com/sjsdfg/dl4j-tutorials/blob/master/src/main/java/lesson6/UsingModelToPredict.java
/**
* 将单通道的 INDArray 保存为灰度图
*
* There's also NativeImageLoader.asMat(INDArray) and we can then use OpenCV to save it as an image file.
*
* @param array 输入
* @return 灰度图转化
*/
private static BufferedImage imageFromINDArray(INDArray array) {
long[] shape = array.shape();
int height = (int)shape[2];
int width = (int)shape[3];
BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_BYTE_GRAY);
for (int x = 0; x < width; x++) {
for (int y = 0; y < height; y++) {
int gray = array.getInt(0, 0, y, x);
// handle out of bounds pixel values
gray = Math.min(gray, 255);
gray = Math.max(gray, 0);
image.getRaster().setSample(x, y, 0, gray);
}
}
return image;
}
Java2DNativeImageLoader
文档地址:https://deeplearning4j.org/api/latest/org/datavec/image/loader/Java2DNativeImageLoader.html
new Java2DNativeImageLoader().asBufferedImage(array);
保存图片到本地
private void saveImage(INDArray combination, int iteration) throws IOException {
IMAGE_PRE_PROCESSOR.revertFeatures(combination);
BufferedImage output = imageFromINDArray(combination);
URL resource = getClass().getResource(OUTPUT_PATH);
File file = new File(resource.getPath() + "/iteration" + iteration + ".jpg");
ImageIO.write(output, "jpg", file);
}