eureka的RateLimiter

RateLimiter

/**
 * Rate limiter implementation is based on token bucket algorithm. There are two parameters:
 * <ul>
 * <li>
 *     burst size - maximum number of requests allowed into the system as a burst
 * </li>
 * <li>
 *     average rate - expected number of requests per second (RateLimiters using MINUTES is also supported)
 * </li>
 * </ul>
 *
 * @author Tomasz Bak
 */
public class RateLimiter {

    private final long rateToMsConversion;

    private final AtomicInteger consumedTokens = new AtomicInteger();
    private final AtomicLong lastRefillTime = new AtomicLong(0);

    @Deprecated
    public RateLimiter() {
        this(TimeUnit.SECONDS);
    }

    public RateLimiter(TimeUnit averageRateUnit) {
        switch (averageRateUnit) {
            case SECONDS:
                rateToMsConversion = 1000;
                break;
            case MINUTES:
                rateToMsConversion = 60 * 1000;
                break;
            default:
                throw new IllegalArgumentException("TimeUnit of " + averageRateUnit + " is not supported");
        }
    }

    public boolean acquire(int burstSize, long averageRate) {
        return acquire(burstSize, averageRate, System.currentTimeMillis());
    }

    public boolean acquire(int burstSize, long averageRate, long currentTimeMillis) {
        if (burstSize <= 0 || averageRate <= 0) { // Instead of throwing exception, we just let all the traffic go
            return true;
        }

        refillToken(burstSize, averageRate, currentTimeMillis);
        return consumeToken(burstSize);
    }

    private void refillToken(int burstSize, long averageRate, long currentTimeMillis) {
        long refillTime = lastRefillTime.get();
        long timeDelta = currentTimeMillis - refillTime;

        long newTokens = timeDelta * averageRate / rateToMsConversion;
        if (newTokens > 0) {
            long newRefillTime = refillTime == 0
                    ? currentTimeMillis
                    : refillTime + newTokens * rateToMsConversion / averageRate;
            if (lastRefillTime.compareAndSet(refillTime, newRefillTime)) {
                while (true) {
                    int currentLevel = consumedTokens.get();
                    int adjustedLevel = Math.min(currentLevel, burstSize); // In case burstSize decreased
                    int newLevel = (int) Math.max(0, adjustedLevel - newTokens);
                    if (consumedTokens.compareAndSet(currentLevel, newLevel)) {
                        return;
                    }
                }
            }
        }
    }

    private boolean consumeToken(int burstSize) {
        while (true) {
            int currentLevel = consumedTokens.get();
            if (currentLevel >= burstSize) {
                return false;
            }
            if (consumedTokens.compareAndSet(currentLevel, currentLevel + 1)) {
                return true;
            }
        }
    }

    public void reset() {
        consumedTokens.set(0);
        lastRefillTime.set(0);
    }
}

调用

private boolean isOverloaded(Target target) {
        int maxInWindow = serverConfig.getRateLimiterBurstSize();
        int fetchWindowSize = serverConfig.getRateLimiterRegistryFetchAverageRate();
        boolean overloaded = !registryFetchRateLimiter.acquire(maxInWindow, fetchWindowSize);

        if (target == Target.FullFetch) {
            int fullFetchWindowSize = serverConfig.getRateLimiterFullFetchAverageRate();
            overloaded |= !registryFullFetchRateLimiter.acquire(maxInWindow, fullFetchWindowSize);
        }
        return overloaded;
    }
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容