Python批量计算多个Excel内指定数据的平均值与标准差

  本文介绍基于Python语言,对一个或多个表格文件多列数据分别计算平均值标准差,随后将多列数据对应的这2个数据结果导出为新的表格文件的方法。

  首先,来看一下本文的需求。现有2.csv格式的表格文件,其每1列表示1个变量,每1行则表示1个样本;其中1个表格文件如下图所示。

  我们现在需要分别对这2个表格文件执行如下操作:计算出其中部分变量(部分列)在所有样本(所有行)中的平均值标准差数据,然后将这些数据结果导出到一个新的.csv格式文件中。

  需求也很简单。明确了需求,接下来就可以开始代码的撰写;本文所用代码如下。

# -*- coding: utf-8 -*-
"""
Created on Sun Mar 10 17:59:23 2024

@author: fkxxgis
"""

import pandas as pd

data = pd.read_csv(r"F:\Data_Reflectance_Rec\Train_data\Train_Model_0715_Main_Over_B_New.csv")
data_nir = pd.read_csv(r"F:\Data_Reflectance_Rec\Train_data\Train_Model_0715_Main_Over_NIR_New.csv")

column_need = ["blue", "green", "red", "inf", "NDVI", "NDVI_dif", "days", "sola", "temp", "prec", "soil", "blue_h", "green_h", "red_h", "inf_h", "ndvi_h", "blue_h_dif", "green_h_dif", "red_h_dif", "inf_h_dif", "ndvi_h_dif"]

mean_value = data[column_need].mean()
std_value = data[column_need].std()
mean_value_nir = data_nir[column_need].mean()
std_value_nir = data_nir[column_need].std()

data_new = pd.DataFrame({"mean_RGB": mean_value, "std_RGB": std_value, "mean_NIR": mean_value_nir, "std_NIR": std_value_nir})

data_new.to_csv(r"F:\Data_Reflectance_Rec\Train_data\mean_std.csv", index = True)

  上述代码具体含义如下。

  首先,使用pandas库导入了pd模块。

  其次,使用pd.read_csv()函数从2.csv格式表格文件中读取数据。其中,因为本文需要读取的是2个文件,所以分别用data变量与data_nir变量读取这2个不同路径的表格文件。

  接下来,定义了一个column_need列表,其中包含了需要计算平均值和标准差的列名。

  随后,使用mean()函数和std()函数分别计算了datadata_nir中指定列的平均值和标准差,并将结果分别赋值给mean_valuestd_valuemean_value_nirstd_value_nir变量。

  然后,使用pd.DataFrame创建了一个新的数据框data_new,其中包含了4列数据:mean_RGB列存储了data中计算得到的平均值std_RGB列存储了data中计算得到的的标准差mean_NIR列存储了data_nir中计算得到的平均值std_NIR列存储了data_nir中计算得到的标准差

  最后,使用to_csv()函数将data_new保存到文件路径为mean_std.csv.csv格式文件中,设置index=True表示将索引列也保存到文件中。

  运行上述代码,即可在结果文件夹中找到对应的结果.csv格式文件;如下图所示,其已经是我们需要的形式了——每1列表示1种对应的结果,每1行表示1种变量。

  至此,大功告成。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,997评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,603评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,359评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,309评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,346评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,258评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,122评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,970评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,403评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,596评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,769评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,464评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,075评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,705评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,848评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,831评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,678评论 2 354

推荐阅读更多精彩内容