Python回归预测建模实战-支持向量机预测房价(附源码和实现效果)

机器学习在预测方面的应用,根据预测值变量的类型可以分为分类问题(预测值是离散型)和回归问题(预测值是连续型),前面我们介绍了机器学习建模处理了分类问题(具体见之前的文章),接下来我们以波斯顿房价数据集为例,做一个回归预测系列的建模文章。

实现功能:

使用sklearn提供的支持向量机回归(SVR)的API对波士顿房价数据集进行预测,并尝试将预测结果进行分析。

实现代码:

from sklearn.datasets import load_boston

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn import preprocessing

from sklearn.model_selection import cross_val_score

from sklearn import metrics

from sklearn.svm import SVR

# 辅助函数

def cross_val(model,X,Y):

    pred = cross_val_score(model, X, Y, cv=10)

    return pred.mean()

def print_evaluate(true, predicted):

    mae = metrics.mean_absolute_error(true, predicted)

    mse = metrics.mean_squared_error(true, predicted)

    rmse = np.sqrt(metrics.mean_squared_error(true, predicted))

    r2_square = metrics.r2_score(true, predicted)

    print('MAE:', mae)

    print('MSE:', mse)

    print('RMSE:', rmse)

    print('R2 Square', r2_square)

    print('__________________________________')

# 加载数据集

boston=load_boston()

df=pd.DataFrame(boston.data,columns=boston.feature_names)

df['target']=boston.target

#查看数据项

features=df[boston.feature_names]

target=df['target']

#数据归一化处理

min_max_scaler = preprocessing.MinMaxScaler()

features = min_max_scaler.fit_transform(features)

#数据集划分

split_num=int(len(features)*0.8)

X_train=features[:split_num]

Y_train=target[:split_num]

X_test=features[split_num:]

Y_test=target[split_num:]

#支持向量机建模

svm_reg = SVR(kernel='rbf', C=30, epsilon=0.01)

print(cross_val(svm_reg,X_train, Y_train))

svm_reg.fit(X_train, Y_train)

test_pred = svm_reg.predict(X_test)

train_pred = svm_reg.predict(X_train)

print('Test set evaluation:\n_____________________________________')

print_evaluate(Y_test, test_pred)

print('Train set evaluation:\n_____________________________________')

print_evaluate(Y_train, train_pred)

# 可视化部分

sns.set(font_scale=1.2)

plt.rcParams['font.sans-serif']='SimHei'

plt.rcParams['axes.unicode_minus']=False

plt.rc('font',size=14)

plt.plot(list(range(0,len(X_test))),Y_test,marker='o')

plt.plot(list(range(0,len(X_test))),test_pred,marker='*')

plt.legend(['真实值','预测值'])

plt.title('Boston房价支持向量机预测值与真实值的对比')

plt.show()

实现效果:


关注V订阅号:数据杂坛,即可在后台联系我获取相关数据集和源码,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容