API - 机器学习 - 速查

常规操作

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings
## 设置字符集,防止中文乱码
mpl.rcParams['font.sans-serif']=[u'simHei']
mpl.rcParams['axes.unicode_minus']=False
## 拦截异常
warnings.filterwarnings(action = 'ignore', category=ConvergenceWarning)
from sklearn.linear_model import LinearRegression, LassoCV, RidgeCV, ElasticNetCV
from sklearn.preprocessing import PolynomialFeatures#数据预处理,标准化
from sklearn.pipeline import Pipeline
from sklearn.linear_model.coordinate_descent import ConvergenceWarning

一、pandas

\color{red}{1、查看数据的分布情况}
pandas.DataFrame.describe


\color{red}{2、查看每列数据类型}
pandas.DataFrame.dtypes


\color{red}{3、纯粹基于整数位置的索引,用于按位置选择。}
pandas.DataFrame.iloc
获取所有行的前两列: X = data.iloc[:,0:2]


二、sklearn

\color{red}{1、标准化}
sklearn.preprocessing.scale
sklearn.preprocessing.StandardScale

\color{red}{2、归一化 }
sklearn.preprocessing.MinMaxScaler

\color{red}{3、正则化}
sklearn.preprocessing.normalize
参考:技巧 - 剖析归一化和标准化


\color{red}{4、管道}
sklearn.pipeline.Pipeline
参考:API - Sklearn三大模型


\color{red}{5、多项式扩展}
sklearn.pipeline.PolynomialFeatures


三、numpy

\color{red}{1、画图时获取样本个数}
numpy.arange

# np.arange(3) 输出 [0, 1, 2]
t=np.arange(len(X_test))
plt.plot(t, Y_test, 'r-', label=u'真实值', ms=10, zorder=N)

\color{red}{2、画图获取颜色 - 等差}
numpy.linspace

degree = np.arange(1, N, 4)  # 阶
colors = []  # 颜色
for c in np.linspace(16711680, 255, degree.size):
    # int(c) 转6位16进制,前补0
    colors.append('#%06x' % int(c))

\color{red}{3、创建模拟数据}
numpy.set_printoptions

np.random.seed(100)
#显示方式设置,每行的字符数用于插入换行符,是否使用科学计数法
np.set_printoptions(linewidth=1000, suppress=True)
N = 10
x = np.linspace(0, 6, N) + np.random.randn(N)
y = 1.8*x**3 + x**2 - 14*x - 7 + np.random.randn(N)
## 将其设置为矩阵
x.shape = -1, 1
y.shape = -1, 1

参考: 确定浮点数字、数组、和numpy对象的显示形式


\color{red}{4、取整}
向上 - numpy.ceil
向下 - numpy.floor
四舍五入 - numpy.rint
截取整数部分 - numpy.trunc


四、matplotlib

matplotlib.pyplot.plot
plt.plot(x, y, 'ro', ms=10, zorder=N)
ms - 宽度 zorder - 图像的层


01 matplotlib - 折线图、绘图属性、Web安全色、子图、保存画板
02 matplotlib - 柱状图、直方图、散点图 、饼图

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,539评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,594评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,871评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,963评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,984评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,763评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,468评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,357评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,850评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,002评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,144评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,823评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,483评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,026评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,150评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,415评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,092评论 2 355

推荐阅读更多精彩内容