4.4 分类准确度accuracy
from sklearn import datasets
from playML.model_selection import train_test_split
from playML.kNN2 import KNNClassfier
# 加载手写数字数据集
digits = datasets.load_digits()
print(digits.keys())
print(digits.DESCR)
X = digits.data
y = digits.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_ratio=0.2)
my_knn_clf = KNNClassfier(k=3)
my_knn_clf.fit(X_train, y_train)
y_predict = my_knn_clf.predict(X_test)
# 比对精确度
sum(y_predict == y_test)/len(y_test)
下面我们对对比精确度这个方法进行封装,新建文件metrics.py
def accuracy_score(y_true, y_predict):
# 计算y_true和y_predict之间的准确率
assert y_true.shape[0] == y_predict.shape[0],\
"the size of y_true must be equal to the size of y_predict"
return sum(y_true == y_predict)/len(y_true)
然后我们调用自己封装的度量函数
from playML.metrics import accuracy_score
accuracy_score(y_test, y_predict)
有些时候可能用户只想知道预测的准确率而不关心预测的具体结果,因此我们把前面的kNN文件中将度量函数引入。
import numpy as np
from math import sqrt
from collections import Counter
from .metrics import accuracy_score
class KNNClassfier:
def __init__(self, k):
# 初始化kNN分类器
assert k >= 1, "k must be valid"
self.k = k
# _表示私有
self._X_train = None
self._y_train = None
def fit(self, X_train, y_train):
# 根据训练集训练KNN分类器
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must equal to the size of y_train"
assert self.k <= X_train.shape[0], \
"the size of X_train must be at least k."
self._X_train = X_train
self._y_train = y_train
return self
def predict(self, X_predict):
# 给定待预测数据集X_predict, 返回表示X_predict的结果向量
assert self._X_train is not None and self._y_train is not None, \
"must fit before predict!"
assert X_predict.shape[1] == self._X_train.shape[1], \
"the feature number of X_predict must be equal to X_train"
y_predict = [self._predict(x) for x in X_predict]
return np.array(y_predict)
def _predict(self, x):
# 给定单个待预测数据x,返回x的预测结果值
assert x.shape[0] == self._X_train.shape[1],\
"the feature number of x must be equal to X_train"
distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._X_train]
nearest = np.argsort(distances)
topK_y = [self._y_train[i] for i in nearest[:self.k]]
votes = Counter(topK_y)
return votes.most_common(1)[0][0]
def score(self, X_test, y_test):
# 根据测试数据集X_test和y_test确定当前模型的准确度
y_predict = self.predict(X_test)
return accuracy_score(y_test, y_predict)
def __repr__(self):
return "KNN(k=%d)" %self.k
下面我们来进行测试一下,在此之前将前面的运行程序要重新启动一下。
my_knn_clf.score(X_test, y_test)
scikit-learn中的accuracy_score
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=666)
from sklearn.neighbors import KNeighborsClassifier
knn_clf = KNeighborsClassifier(n_neighbors=3)
knn_clf.fit(X_train, y_train)
y_predict = knn_clf.predict(X_test)
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_predict)
# 对比我们的度量函数
knn_clf.score(X_test, y_test)