​阿里巴巴洪佳鹏:生成对抗网络和隐层属性交换的人脸属性迁移 - 学习笔记

学习资料来源

读芯术 -【学术报告】​阿里巴巴洪佳鹏:生成对抗网络和隐层属性交换的人脸属性迁移

学术报告PPT

[感谢读芯君,感谢供稿人:张继]


是在这里看到的哟,感谢感谢

学习笔记

1. GAN(生成对抗网络)介绍

生成体现在生成器从无到有,
对抗体现在生成器和判别器的目标
可以从目标函数看出,判别器的任务就是判别真假样本,生成器的任务就是要骗过它,使得生成的样本判定成一个真的样本。
生成器生成样本,经过判别器的判别以后反馈给它的信息是生成的还不够好,也会引导继续生成更好的样本。


GAN

2. 图像翻译(图像->图像)

概念

(1)图像域:具有某种属性的图象集合

  • 所有戴眼镜的人可以看成一个图像域,因为都有一套相同的属性,就是眼镜。

(2)属性相对的图像域:同一个属性的不同取值形成的不同图像域

  • 戴眼镜 vs 不戴眼镜

(3)图像ID

  • 对于特定属性来说,一张图像的ID是指它在该属性的不同图像域中的图像所共有的部分

(4)配对样本/费配对样本

  • 配对样本:一个人戴眼镜和同一个人不戴眼镜的样本
  • 非配对样本:一个人戴眼镜和其他人不戴眼镜的样本

(5)人脸图像编辑

  • 添加或者移除一种或多种人脸属性

3. 常见的翻译算法

(1)判别器去判断图像是否落在图像域内(最常见做法)
  • CycleGAN、UNIT、DTN、StarGAN、DNA-GAN、ELEGANT

  • 非匹配样本可训练

  • CycleGAN
    有两个互为逆映射的生成器分别负责两个图像域互转,两个判别器分别判别图像是否分别来自两个图像域。这里判别器的任务有两个,一个是判别图像域是不是对的,就是有/没有属性,以及图像质量是不是跟真实样本匹配。


    CycleGAN
  • UNIT
    把生成器拆成编码器和解码器,编码器分别对两个域的图像做编码,可以共享高层,这样使得两个图像域的编码落在同一个空间里面,解码的时候输入给特定的解码器,A图像域解码器生成的是A图像域,B图像域解码器生成的是B图像域,然后判别器判断图像域是否是对的。


    UNIT
  • StarGAN
    CycleGAN的拓展,可以针对多个图像域,也有多个属性,比如眼镜、刘海和微笑各种属性,生成器提供的不只是一张图,可以把想要转过去的属性告诉它,就是可以同时指定多个属性修改,生成器也只修改指定的属性。多属性修改的算法很多都是采用条件判别器的做法,StarGAN则采用的是AcGAN的做法,通过判别器接收一张图,除了判断真假以外,还要把这个图像域的信息预测出来。


    StarGAN
(2)判别器去判断翻译结果的匹配度
  • pix2pix
  • 需要配对样本(supervised learning)
  • 判别器主要任务:图像域的正确性,图片质量,图像匹配程度


    pix2pix
(3)判别器在hidden layer对抗
  • FaderNets
  • 通过对抗分离属性与图像ID
  • 缺点:训练难度大
  • 判别器主要任务
    判别器要从图像的编码当中预测出图像域的信息,对编码器来说则不能让判别器得逞,要将属性的信息从图像编码中剥离出去。也就是说它需要使得判别器的预测是相反的。


    FaderNets

4.报告作者的主要工作

(1)DNA-GAN

  • 交换隐形编码
    *编码器分别编码各个属性,然后交换两张图特定属性的编码就可以交换属性,因为是通过跟范例图交换属性,因此可以引入多样性。前面介绍的其他图像翻译方法都很难引入多样性,针对属性的建模就是1和0,也就是有和没有,没办法确定加上什么类型的眼镜或者刘海,而我们这里是可以控制的。

  • 如何分别编码?
    首先需要指定编码的顺序,要求前面一部分是编码眼镜,后面一部分是编码刘海,还有一部分是编码和两个属性无关的图像ID。考虑第一个属性的时候只用第一个属性的图片,上面带加号的代表有这个属性,减号代表没有这个属性。考虑第一个属性的时候只用第一个属性的图片,考虑第二个属性的时候只用第二个属性的图片,这样就可以和属性编码挂上钩。然后会做一个交叉重组,会有四个结果:两种是和原来的一样,另外两个结果就是换了特定的部分,比如换了第一个属性,然后解码出来四张图,两张是和原图一样的,两张是新的图,就是只换了第一个属性。


    DNA-GAN

(2)ELEGANT

  • 继承自隐层做差。

  • 无需湮灭/零化操作

  • 无需建模图像ID
    隐层直接做差的话可能不太好学,因为两张得到两张新图所需要的残差图,它们的编码在隐层做差意义下,只差了一个符号,这是有点难学的。ELEGANT则会自己去学习做差的操作,简单的做法就是把两个编码拼起来,要求从前面的编码转化到后面的编码,这也可以看成是一种做差的做法,解码器自己去学做差。这样做也没有平凡解的问题,不需要建模图像ID。


    ELEGANT
  • Batch Normalization 有问题
    *训练结果正常,测试没效果
    BN回破坏图像色彩、亮度、对比度等信息(U_net可解决)
    涉及到两批来自不同域的图,BN不收敛导致归一化失效

    • 替代方案:l2 normalization

5. 实验

实验效果图 + 刘海
实验效果图 + 微笑
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,423评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,147评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,019评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,443评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,535评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,798评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,941评论 3 407
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,704评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,152评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,494评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,629评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,295评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,901评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,742评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,978评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,333评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,499评论 2 348

推荐阅读更多精彩内容