Zookeeper系列介绍(持续更新)
- 在Java中使用多线程编程,需要考虑多线程环境下程序执行结果的正确性,是否达到预期效果,因此需要在操作共享资源时引入锁,共享资源同一时刻只能由一个线程进行操作。
- Java提供了多种本地线程锁。例如synchronized锁,JUC包下提供的可重入锁ReentrantLock、读写锁ReentrantReadWriteLock等;
- Java本地锁适用于单机环境。在分布式环境下,存在多台服务器同时操作同一共享资源的场景时,服务器之间无法感知到Java本地锁的加锁状态,因此需要通过分布式锁来保证集群环境下执行任务的正确性;
常见分布式锁介绍
- MySQL数据库中添加version字段实现乐观锁;
- Redis的set命令(存在单点问题,若redis集群中某台机器宕机,可能引发加解锁混乱);
- Redisson开源框架中实现的RedLock(解决了set方式实现引发的单点问题);
- 通过Zookeeper官方API自主实现分布式锁;
- Curator开源框架实现的Zookeeper分布式锁InterProcessMutex等;
本文根据Zookeeper官方API实现分布式锁,带大家了解Zookeeper的强大之处,后续各种锁的实现及原理也会带大家一一了解;
Zookeeper实现方式
Zookeeper中数据节点znode分为四种类型,实现分布式锁主要利用临时顺序节点。其特性具体介绍可见【//www.greatytc.com/p/cbe5f0dd6cca】。
- 实现思路
- 客户端中的线程需要加锁时,首先获取持久化锁节点路径下所有临时顺序节点,若当前线程创建的临时顺序节点为最小节点,则表示当前线程加锁成功;
- 若不是最小节点,则当前线程创建的节点监听比它小的最大节点,阻塞等待被监听节点的删除通知,待前置节点删除后,重新判断当前线程创建的节点是否为最小节点,若是,则加锁成功
- 若不是最小节点,则重复1、2步的操作,直到加锁成功;
- 示例及分析
如下图所示,三个客户端线程分别对锁名为“test4”加锁,创建对应的三个临时顺序节点:client0000000000、client0000000001、client0000000002;
- 首先client0000000000获取锁,client0000000001监听client0000000000,client0000000002监听client0000000001;
- client0000000000节点删除后,通知client0000000001尝试获取锁;
- client0000000001节点删除后,通知client0000000002尝试获取锁;
异常情况:若client0000000000持有锁时,client0000000001节点异常消失,那么client0000000002节点检测到client0000000000仍存在,则要监听client0000000000节点;
- 代码实现(可直接使用,拿走不谢)
import org.apache.commons.lang3.StringUtils;
import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.stereotype.Service;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.TreeSet;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
@Service
public class ZkLockDemo implements InitializingBean, Watcher {
private static Logger logger = LoggerFactory.getLogger(ZkLockDemo.class);
private static volatile ZooKeeper zk;
static String zkAddress = "127.0.0.1:2181";
/**
* 根节点
*/
private String root = "/locksNode";
/**
* 存储当前线程创建的锁(临时顺序节点的全路径)
*/
private ThreadLocal<List<String>> nodePathList = new ThreadLocal<>();
public ZkLockDemo() {
}
@Override
public void afterPropertiesSet() {
createRootNode();
}
/**
* 创建锁的持久化根节点
*/
private void createRootNode() {
try {
if (StringUtils.isBlank(zkAddress)) {
throw new NullPointerException("zooKeeper address conf error");
}
CountDownLatch countDownLatch = new CountDownLatch(1);
//建立zk连接
logger.info("开始连接zk", root);
zk = new ZooKeeper(zkAddress, 10000, new Watcher() {
@Override
public void process(WatchedEvent event) {
if (event.getState() == Event.KeeperState.SyncConnected) {
countDownLatch.countDown();
}
}
});
//等待锁连接成功
countDownLatch.await(10, TimeUnit.SECONDS);
if (zk == null) {
throw new NullPointerException("zooKeeper connect failure");
}
Stat stat = zk.exists(root, true);
if (stat == null) {
//创建持久化根节点
zk.create(root, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
logger.info("根节点{}创建完成", root);
} else {
logger.info("根节点{}已存在,直接使用", root);
}
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 监听zk是否需要重连接
* @param watchedEvent
*/
@Override
public void process(WatchedEvent watchedEvent) {
try {
//zk的session过期时,重新创建连接
if (watchedEvent.getState() == Event.KeeperState.Expired) {
logger.info("zk连接过期,重新创建连接");
zk.close();
zk = null;
createRootNode();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
/**
* 创建具体的锁节点
*
* @param lockPath
*/
private void createLockNode(String lockPath) {
try {
//判断指定锁路径是否存在,若不存在则创建
Stat stat = zk.exists(lockPath, true);
if (stat == null) {
//创建持久化锁节点
zk.create(lockPath, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
logger.info("锁路径创建成功:{}", lockPath);
} else {
logger.info("锁路径已经存在:{}", lockPath);
}
} catch (KeeperException.NodeExistsException e) {
logger.error("node节点已经存在,本次创建失败:{}", e.getMessage());
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 阻塞锁
* @param lockName 锁名
*/
public void lock(String lockName) {
try {
//创建锁目录
String lockPath = root + "/" + lockName;
createLockNode(lockPath);
//当前线程创建的临时顺序节点
String clientLockNode = zk.create(lockPath + "/client", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
//获取当前临时顺序节点的前一个节点,若获取的前置节点为null,则表示当前节点获取到锁
String preNode=getPreNode(lockPath,clientLockNode);
CountDownLatch latch = new CountDownLatch(1);
if(preNode!=null){
//注册监听
Stat lockStat = zk.exists(preNode, new LockWatcher(latch,lockPath,clientLockNode));
if (lockStat != null) {
// 等待
latch.await();
latch = null;
addLock(clientLockNode);
logger.info("阻塞线程锁获取成功,锁路径为:{}", clientLockNode);
}
}
} catch (Exception e) {
throw new RuntimeException(e);
}
}
/**
* 获取当前线程创建的临时顺序节点的前一个节点
* @param lockPath 锁路径
* @param clientLockNode 当前线程创建的临时顺序节点
* @return 前一个临时顺序节点
*/
private String getPreNode(String lockPath,String clientLockNode){
String preNode=null;
try {
// 取出lockPath下所有子节点
List<String> subNodes = zk.getChildren(lockPath, true);
TreeSet<String> sortedNodes = new TreeSet<>();
for (String node : subNodes) {
sortedNodes.add(lockPath + "/" + node);
}
//获取最小临时顺序节点
String minNode = sortedNodes.first();
// 如果当前节点是最小节点,则表示取得锁
if (clientLockNode.equals(minNode)) {
addLock(clientLockNode);
logger.info("锁获取成功,锁路径为:{}", clientLockNode);
}else{
//获取比当前节点小的最大节点进行监听
preNode = sortedNodes.lower(clientLockNode);
logger.info("阻塞等待获取锁,锁路径为:{},监听的前置节点为:{}", clientLockNode, preNode);
}
}catch (Exception e){
}
return preNode;
}
/**
* 监听临时顺序节点是否被删除
*/
class LockWatcher implements Watcher {
private CountDownLatch latch = null;
private String lockPath = null;
private String clientLockNode = null;
public LockWatcher(CountDownLatch latch,String lockPath,String clientLockNode) {
this.latch = latch;
this.lockPath=lockPath;
this.clientLockNode=clientLockNode;
}
@Override
public void process(WatchedEvent event) {
if (event.getType() == Event.EventType.NodeDeleted) {
//若当前节点的前置节点被删除,需重新判断当前节点是否还存在前置节点
//正常情况下前置节点删除,则表示当前节点获取锁
//当前置节点没有获取锁,但是异常断连时,当前节点则需监听剩余的最大前置节点
String preNode=getPreNode(lockPath,clientLockNode);
if(preNode==null){
latch.countDown();
}else{
try {
zk.exists(preNode, new LockWatcher(latch,lockPath,clientLockNode));
}catch (Exception e){
}
}
}
}
}
/**
* 尝试获取锁
* @param lockName
* @return
*/
public boolean tryLock(String lockName) {
try {
//创建锁目录
String lockPath = root + "/" + lockName;
createLockNode(lockPath);
//当前线程创建的临时顺序节点
String clientLockNode = zk.create(lockPath + "/client", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
String preNode = getPreNode(lockPath, clientLockNode);
// 如果当前节点是最小节点,则表示取得锁
addLock(clientLockNode);
if (preNode == null) {
logger.info("锁获取成功,锁路径为:{}", clientLockNode);
return true;
}else{
unlock(lockName);
}
} catch (Exception e) {
throw new RuntimeException(e);
}
return false;
}
/**
* 存储本次线程中添加的锁
* @param lockPath
*/
private void addLock(String lockPath) {
List<String> list = nodePathList.get();
if (list == null) {
list = new ArrayList<>();
}
list.add(lockPath);
nodePathList.set(list);
}
/**
* 删除锁
*/
public void unlock(String lockName) {
try {
String lockPathPrefix = root + "/" + lockName;
String lockPath = "";
List<String> list = nodePathList.get();
if (list != null && list.size() > 0) {
Iterator<String> iterator = list.iterator();
while (iterator.hasNext()) {
String lockWholePath = iterator.next();
if (lockWholePath.contains(lockPathPrefix)) {
lockPath = lockWholePath;
iterator.remove();
break;
}
}
if (StringUtils.isNotBlank(lockPath)) {
Stat stat = zk.exists(lockPath, true);
if (stat != null) {
zk.delete(lockPath, -1);
logger.info("锁释放成功,锁路径为:{}", lockPath);
}
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
- 优点
- 性能较好,可用性高,可以很方便的实现阻塞锁;
- 客户端宕机等异常情况下,当前客户端持有的锁可实时释放;
- 依据Zookeeper官方API自定义实现,有问题方便排查;
- 缺点
- Zookeeper官方API抛出的各种异常需手动处理;
- Zookeeper连接管理,session失效管理需手动处理;
- Watch只生效一次,再使用时需重新注册;
- 不适用场景:一个线程中先添加A锁再添加B锁,同时另一个线程先添加B锁再添加A锁,该种死锁问题无法解决;