Spark从入门到精通47:Spark Streaming:与Spark SQL结合使用之top3热门商品实时统计案例实战

Spark Streaming最强大的地方在于,可以与Spark Core、Spark SQL整合使用,之前已经通过transform、foreachRDD等算子看到,如何将DStream中的RDD使用Spark Core执行批处理操作。现在就来看看,如何将DStream中的RDD与Spark SQL结合起来使用。

案例:每隔10秒,统计最近60秒的,每个种类的每个商品的点击次数,然后统计出每个种类top3热门的商品。

首先看一下,输入日志的格式
leo iphone mobile_phone
获取输入数据流
这里顺带提一句,之前没有讲过,就是说,我们的Spark Streaming的案例为什么都是基于socket的呢?因为这个比较方便我们的实践。
其实,企业里面,真正最常用的,都是基于Kafka这种数据源
但是我们的练习,用socket也无妨,比较方便,而且一点也不影响学习
因为不同的输入来源的,不同之处,只是在创建输入DStream的那一点点代码
所以,核心是在于之后的Spark Streaming的实时计算
所以只要我们掌握了各个案例和功能的使用
在企业里,切换到Kafka,是易如反掌的,因为我们之前都详细讲过,而且实验过,实战编码过,将Kafka作为数据源的两种方式了。
实现代码:

package streaming;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.hive.HiveContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import scala.Tuple2;

import java.util.ArrayList;
import java.util.List;

/**
 * 与Spark SQL整合使用,top3热门商品实时统计
 */
public class Top3HotProduct {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf()
                .setMaster("local[2]")
                .setAppName("Top3HotProduct");
        JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));
        // 获取输入数据流
        JavaReceiverInputDStream<String> productClickLogsDStream = jssc.socketTextStream("192.168.131.101",9999);
        // 然后,应该是做一个映射,将每个种类的每个商品,映射为(category_product, 1)的这种格式
        // 从而在后面可以使用window操作,对窗口中的这种格式的数据,进行reduceByKey操作
        // 从而统计出来,一个窗口中的每个种类的每个商品的,点击次数
        JavaPairDStream<String, Integer> categoryProductPairsDStream =
                productClickLogsDStream.mapToPair(x->new Tuple2<>(x.split(" ")[2]+"_"+x.split(" ")[1],1));
        // 然后执行window操作
        // 到这里,就可以做到,每隔10秒钟,对最近60秒的数据,执行reduceByKey操作
        // 从而统计出来,一个窗口中的每个种类的每个商品的,点击次数
        JavaPairDStream<String, Integer> categoryProductCountsDStream =
        categoryProductPairsDStream.reduceByKeyAndWindow((v1,v2)->v1+v2, Durations.seconds(60),Durations.seconds(10));
        // 统计出每个种类top3热门的商品
        categoryProductCountsDStream.foreachRDD(new VoidFunction<JavaPairRDD<String, Integer>>() {
            @Override
            public void call(JavaPairRDD<String, Integer> categoryProductCountsRDD) throws Exception {
                // 将该RDD,转换为JavaRDD<Row>的格式
                JavaRDD<Row> categoryProductCountRowRDD = categoryProductCountsRDD.map(x->{
                   String category = x._1.split("_")[0];
                   String product = x._1.split("_")[1];
                   Integer count = x._2;
                   return RowFactory.create(category,product,count);
                });
                // 然后,执行DataFrame转换
                List<StructField> structFields = new ArrayList<>();
                structFields.add(DataTypes.createStructField("category",DataTypes.StringType,true));
                structFields.add(DataTypes.createStructField("product",DataTypes.StringType,true));
                structFields.add(DataTypes.createStructField("click_count",DataTypes.IntegerType,true));
                StructType structType = DataTypes.createStructType(structFields);
                HiveContext hiveContext = new HiveContext(categoryProductCountsRDD.context());
                DataFrame categoryProductCountDF = hiveContext.createDataFrame(categoryProductCountRowRDD, structType);
                // 将60秒内的每个种类的每个商品的点击次数的数据,注册为一个临时表
                categoryProductCountDF.registerTempTable("product_click_log");
                // 执行SQL语句,针对临时表,统计出来每个种类下,点击次数排名前3的热门商品
                DataFrame top3ProductDF = hiveContext.sql(
                        "SELECT category,product,click_count "
                                + "FROM ("
                                + "SELECT "
                                + "category,"
                                + "product,"
                                + "click_count,"
                                + "row_number() OVER (PARTITION BY category ORDER BY click_count DESC) rank "
                                + "FROM product_click_log"
                                + ") tmp "
                                + "WHERE rank<=3");
                top3ProductDF.show();
            }
        });
        jssc.start();
        jssc.awaitTermination();
        jssc.close();
    }
}

这里说明一下,其实在企业场景中,可以不是打印的.按理说,应该将数据保存到redis缓存、或者是mysql db中,然后,应该配合一个J2EE系统,进行数据的展示和查询、图形报表。
开发完毕,开始打包,发布到Hadoop集群上,然后执行脚本
执行脚本如下:



在执行脚本前nc -l 9999已经开启,在nc下输入:


控制台结果打印如下:



从结果可以看到,a型手机点击了4次最多,其次是b型手机和c型手机。
至此,top3热门商品实时统计案例实践成功。
Scala版本:

package cn.spark.study.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.hive.HiveContext

/**
 * @author Administrator
 */
object Top3HotProduct {
  
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
        .setMaster("local[2]")  
        .setAppName("Top3HotProduct")
    val ssc = new StreamingContext(conf, Seconds(1))
    
    val productClickLogsDStream = ssc.socketTextStream("spark1", 9999)  
    val categoryProductPairsDStream = productClickLogsDStream
        .map { productClickLog => (productClickLog.split(" ")(2) + "_" + productClickLog.split(" ")(1), 1)}
    val categoryProductCountsDStream = categoryProductPairsDStream.reduceByKeyAndWindow(
        (v1: Int, v2: Int) => v1 + v2, 
        Seconds(60), 
        Seconds(10))  
    
    categoryProductCountsDStream.foreachRDD(categoryProductCountsRDD => {
      val categoryProductCountRowRDD = categoryProductCountsRDD.map(tuple => {
        val category = tuple._1.split("_")(0)
        val product = tuple._1.split("_")(1)  
        val count = tuple._2
        Row(category, product, count)  
      })
      
      val structType = StructType(Array(
          StructField("category", StringType, true),
          StructField("product", StringType, true),
          StructField("click_count", IntegerType, true)))
          
      val hiveContext = new HiveContext(categoryProductCountsRDD.context)
      
      val categoryProductCountDF = hiveContext.createDataFrame(categoryProductCountRowRDD, structType)  
      
      categoryProductCountDF.registerTempTable("product_click_log")  
      
      val top3ProductDF = hiveContext.sql(
            "SELECT category,product,click_count "
            + "FROM ("
              + "SELECT "
                + "category,"
                + "product,"
                + "click_count,"
                + "row_number() OVER (PARTITION BY category ORDER BY click_count DESC) rank "
              + "FROM product_click_log"  
            + ") tmp "
            + "WHERE rank<=3")
            
      top3ProductDF.show()
    })
    
    ssc.start()
    ssc.awaitTermination()
  }
  
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,835评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,900评论 2 383
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,481评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,303评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,375评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,729评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,877评论 3 404
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,633评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,088评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,443评论 2 326
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,563评论 1 339
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,251评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,827评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,712评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,943评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,240评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,435评论 2 348

推荐阅读更多精彩内容