3.5RDD的容错机制

3.5 RDD的容错机制

RDD实现了基于Lineage的容错机制。RDD的转换关系,构成了compute chain,可以把这个compute chain认为是RDD之间演化的Lineage。在部分计算结果丢失时,只需要根据这个Lineage重算即可。

图3-11中,假如RDD2所在的计算作业先计算的话,那么计算完成后RDD1的结果就会被缓存起来。缓存起来的结果会被后续的计算使用。图中的示意是说RDD1的Partition2缓存丢失。如果现在计算RDD3所在的作业,那么它所依赖的Partition0、1、3和4的缓存都是可以使用的,无须再次计算。但是Partition2由于缓存丢失,需要从头开始计算,Spark会从RDD0的Partition2开始,重新开始计算。

内部实现上,DAG被Spark划分为不同的Stage,Stage之间的依赖关系可以认为就是Lineage。关于DAG的划分可以参阅第4章。

提到Lineage的容错机制,不得不提Tachyon。Tachyon包含两个维度的容错,一个是Tachyon集群的元数据的容错,它采用了类似于HDFS的Name Node的元数据容错机制,即将元数据保存到一个Image文件,并且保存了元数据变化的编辑日志(EditLog)。另外一个是Tachyon保存的数据的容错机制,这个机制类似于RDD的Lineage,Tachyon会保留生成文件数据的Lineage,在数据丢失时会通过这个Lineage来恢复数据。如果是Spark的数据,那么在数据丢失时Tachyon会启动Spark的Job来重算这部分内容。如果是Hadoop产生的数据,那么重新启动相应的Map Reduce Job就可以。现在Tachyon的容错机制的实现还处于开发阶段,并不推荐将这个机制应用于生产环境。不过,这并不影响Spark使用Tachyon。如果Spark保存到Tachyon的部分数据丢失,那么Spark会根据自有的容错机制来重算这部分数据。

[插图]

图3-11 RDD的部分缓存丢失的逻辑图

3.6 小结

RDD是Spark最基本,也是最根本的数据抽象。RDD是只读的、分区记录的集合。RDD只能基于在稳定物理存储中的数据集和其他已有的RDD上执行确定性操作来创建。这些确定性操作称为转换,如map、filter、groupBy、join。RDD支持丰富的转换操作,极大地简化了用户应用的编写。

RDD不需要物化。RDD含有如何从其他RDD衍生(即计算)出本RDD的相关信息(即Lineage),据此在RDD部分分区数据丢失时可以通过物理存储的数据计算出相应的RDD分区。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,290评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,107评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,872评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,415评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,453评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,784评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,927评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,691评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,137评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,472评论 2 326
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,622评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,289评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,887评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,741评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,977评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,316评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,490评论 2 348

推荐阅读更多精彩内容