python 高阶编程

python 除了速度慢 稳定性差 不够健壮 真的没有其他缺点 !!
正常使用python 基本编程就够了,但是正是因为 python的性能差,我们如果可以使用python高效编程将大大提高运行速率,顺便举个例子
上周在牛人的启发下 自己用python 实现了推荐系统常用的ALS 最小二乘算法,原来的大牛 人家使用的是嵌套list 来实现Matrix ,代码很健壮 ,相同的数据集迭代十次 ,基本上三四分钟,而我为了寻找其他途径的可能使用 defaultdict(lambda:list()) 来模拟Matrix ,发现性能差了非常大,我这个要迭代十次,大概三个小时。。。 耗时主要在 矩阵相乘阶段计算rmse损失值
后来我对 这部分代码做了相关优化,迭代十次的耗时压缩到了20分钟内,但是还是 有差距,后来我干脆直接把大牛的一部分矩阵相乘的代码拿来即用,耗时压缩到了13分钟,还是有差距,那这个时候的差距就不是代码问题,是你所选择的数据容器,你用dict 模拟矩阵 效率要差于嵌套的list,所以我们看 ,好的性能 源自你如何去选择好的数据容器和足够优化你的代码结构和逻辑。

python的 高阶编程其实一点也不深奥 ,集中于
1.列表推导 字典推导

  1. map filter reduce lambda表达式
  2. 装饰器 和属性装饰
    4.生成器
    5.动态属性 装饰
    6.正确的使用拆箱装箱
    7.上下文管理器
    8.描述器
    9.正确使用数据容器
    https://www.cnblogs.com/keep-going2099/articles/8179177.html
    https://www.cnblogs.com/wangjian8888/p/6111701.html

对我而言我认为 对生成器 yield还是有点模糊,其他的都比较容易理解
关于 生成器 yield 有一篇不错的文章
//www.greatytc.com/p/babb4add9245

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,265评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,078评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,852评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,408评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,445评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,772评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,921评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,688评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,130评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,467评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,617评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,276评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,882评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,740评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,967评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,315评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,486评论 2 348

推荐阅读更多精彩内容