[ML] 特征提取3种基本方法

      嵌入(embed):学习算法中本来就包含有特征选择的过程,例如决策树一类的分类器,它们在决定分枝点时就会选择最有效的特征来对数据进行划分。但这种方法是在局部空间中进行优选,效果相对有限。
      封装(Wrapper): 特征选择过程与训练过程整合在一起,以模型的预测能力作为衡量特征子集的选择标准,例如分类精度,有时也可加入复杂度惩罚因子。多元线性回归中的前向搜索和后向搜索可以说是封装方法的一种简单实现。不同的学习算法要搭配不同的封装方法,如果是线性分类器,可以采用之前博文谈到的LASSO方法(glmnet包)。如果是非线性分类器,如树模型则可以采用随机森林封装(RRF包)。封装法可以选择出高质量的子集,但速度会比较慢。
      过滤(Filter):特征选择过程独立于训练过程,以分析特征子集内部特点来预先筛选,与学习器的选择无关。过滤器的评价函数通常包括了相关性、距离、信息增益等。在数据预处理过程中删除那些取值为常数的特征就是过滤方法的一种。过滤法速度快但有可能删除有用的特征。
      在实务中进行特征选择可以先借由专家知识来初步筛选,再用过滤法快速筛选无关变量,最后采用封装法得到最优子集和模型结果。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容

  • 特征选择与特征学习 在机器学习的具体实践任务中,选择一组具有代表性的特征用于构建模型是非常重要的问题。特征选择通常...
    JasonDing阅读 28,113评论 3 60
  • 樊登老师一直强调,GROW模型可用于教练对他人进行辅导。不过于我而言,更为重要的是,听完樊登老师的讲解,我顿悟——...
    f24ba785e7f4阅读 996评论 1 1
  • “28岁的凉夏,我知道你对我不满意,但我对你——也不是那么满意啊”。 28岁时的标签是什么 成熟 懂事 识大体 1...
    小淼砸阅读 303评论 0 0
  • 不要随便的去批评他人,批评会招来愤恨。 批评会使人觉得更加沮丧,对改变事实是一点帮助也没有。 设身处地的去为他人着...
    AR娟娟阅读 291评论 0 0
  • 接到比赛通知,有点小蒙。 曾经看到过《一滴水经过丽江》这篇文题,记得好像培东老师上过公开课。网上搜了搜,确实。 下...
    雪域飞燕阅读 1,622评论 6 5