WebP 技术原理及应用

1.背景

浏览器环境下,使用最多的图片格式有 JPEG、PNG、GIF。其中,JPEG 适合色彩复杂的图片,PNG 适合色彩单一或者需要透明的图片,GIF 通常用于动图。现有的图片格式体积较大。


图1.1- 微店模板编辑页瀑布图

从瀑布图可见,图片的加载在整个页面加载时间中占据了很大的比重,个别 JPEG 图片甚至达 200 多 KB,这在移动端环境下非常影响用户体验。

2.介绍

WebP 是一个现代的图片格式,用于在 web 上提供更好的有损和无损压缩图片。它能够在肉眼观看几乎一样的情况下,对图片体积进行大幅压缩。在将一张 1.3MB 的 JPG 有损压缩为 WebP 后,大小仅为483KB。你能分辨出下面两张图片有什么差别吗?


图2.1

图2.2

我们来测试一下 JPG 和 PNG 转成 WebP 后,实际体积大概减少多少。

根据测试结果可见,对 PNG 进行 WebP 无损压缩后,体积减少了 31%,这与 Google 宣称的 26% 大体吻合。WebP 有损压缩的减少比例则更大,将图片质量降低到原来的 75% 后,减少体积达 90% 左右。值得注意的是,将 JPG 进行 WebP 无损压缩后,图片大小反而增加了 66%。在实际应用中,推荐使用 WebP 有损压缩。

另外,WebP 支持 alpha 透明和 24bit 颜色数,不存在 PNG8 色彩不够丰富和毛边问题。WebP 也支持真彩动图。因此 WebP 可以替代当前大多数图片格式,包括 JPG、PNG、GIF 等。

3.原理

下面来分析一下 WebP 有损压缩的编码过程:
1. 分块(MacroBlocking)
将图片划分成多个宏块(macro blocks),典型的宏块由一个 16×16 的亮度像素(luma pixel)块和两个 8×8 的色度像素(chroma pixel)块组成。分块越小,预测越准,需要记录的信息也越多。一般来说,细节越丰富的地方,分块越细,即使用 4×4 分块预测。细节相对不丰富的地方使用 16×16 分块。(这一过程相当于 JPEG 编码中的色彩空间转换)

图3.1-分块

2. 帧内预测
WebP 有损压缩使用了帧内预测编码,这一技术也被用于 VP8 视频编码中的关键帧压缩。VP8 有四种常见的帧内预测模型。

  • H_PRED(horizontal prediction)
    像素块中每一行使用其左边一列(col L)的数据填充(如图3.2 Horizontal)
  • V_PRED (vertical prediction)
    像素块中每一列使用其上边一行(row A)的数据填充(如图3.2 Vertical)
  • DC_PRED (DC prediction)
    像素块中每个单元使用 row A 和 col L 的所有像素的平均值填充(如图3.2 Average)
  • TM_PRED (TrueMotion prediction)
    一种我还没搞清楚的预测模式,比较接近真实数据

下图展示了 4×4 分块的所有帧内预测模型


图 3.2 - VP8 帧内预测模型

使用哪种分块预测模式是动态决定的。编码器会将所有可能的预测模式都计算出来,然后选出错误程度最小的模式。

3. DCT(离散余弦变换)
将预测部分的原图像数据减去预测出来的数据,得到差值矩阵,最后对差值进行 DCT。此步骤会生成一个频率系数矩阵,左上的系数幅度最大,右下最小。幅度值越小,频率越高。大部分图片信息都在左上区域。这一步的作用就是找出图片的高频和低频区域。

4. 量化
人眼对高频部分不敏感,这一步会将高频部分舍去。对上一步的频率系数表和量化表进行计算,将频率系数表和量化表按位相除,并四舍五入位整数。最终生成一个量化矩阵。

5. 算法编码
WebP使用 Arithmetic entropy encoding,该算法相比JPEG上使用的 Huffman encoding,在压缩表现上更出色。

图 3.3 - WebP 无损压缩过程

总结一下,WebP 对图片进行分块,然后对待填充的宏块使用了帧间预测技术,根据其附近已编码宏块的数据,预测出当前块数据。相比 JEPG 对图像原值进行编码,WebP 编码的是预测值和原值的差值,这是 WebP 体积更小的主要原因。最后,WebP 使用了更优秀的算数编码。

4.应用

图 4.1 - WebP 兼容性

WebP 完全兼容 Android 4.4 及其以上版本,而在另一大移动平台 iOS 上,则是完全不兼容 WebP。因此,我们需要在前端进行平台检测,对于支持 WebP 的平台输出 WebP,在不支持的平台上采用降级方案。

方案一:
JavaScript 判断浏览器是否支持 WebP。

function check_webp_feature(feature, callback) {
    var kTestImages = {
        lossy: "UklGRiIAAABXRUJQVlA4IBYAAAAwAQCdASoBAAEADsD+JaQAA3AAAAAA",
        lossless: "UklGRhoAAABXRUJQVlA4TA0AAAAvAAAAEAcQERGIiP4HAA==",
        alpha: "UklGRkoAAABXRUJQVlA4WAoAAAAQAAAAAAAAAAAAQUxQSAwAAAARBxAR/Q9ERP8DAABWUDggGAAAABQBAJ0BKgEAAQAAAP4AAA3AAP7mtQAAAA==",
        animation: "UklGRlIAAABXRUJQVlA4WAoAAAASAAAAAAAAAAAAQU5JTQYAAAD/////AABBTk1GJgAAAAAAAAAAAAAAAAAAAGQAAABWUDhMDQAAAC8AAAAQBxAREYiI/gcA"
    };
    var img = new Image();
    img.onload = function () {
        var result = (img.width > 0) && (img.height > 0);
        callback(feature, result);
    };
    img.onerror = function () {
        callback(feature, false);
    };
    img.src = "data:image/webp;base64," + kTestImages[feature];
}

如果平台支持 WebP,则在请求头 Accept 中带上 image/webp,这样服务器就会知道浏览器是否支持 WebP。

方案二:
Google 开发的 PageSpeed 模块,可以自动将图像转出 WebP 或者其他格式。以 Nginx 为例。
首先在 http 模块中开启 pagespeed 属性。

pagespeed on;
pagespeed FileCachePath "/var/cache/ngx_pagespeed/“;

然后在你的主机配置添加如下一行代码,就能启用这个特性。

pagespeed EnableFilters convert_png_to_jpeg,convert_jpeg_to_webp;

我们可以看下经过转换后的代码:
页面原始代码:

图 4.2 - 原始代码

Chrome 打开后源码如下:

图 4.3 - Chrome 下的代码

Safari 打开如下:

图 4.4 - Safari 下的代码

5.总结

显然,WebP 是个好东西,它在肉眼效果几乎一样的情况下,大幅减少了图片体积。本文对 WebP 这种图片格式进行了性能测试分析,并解释了 WebP 有损压缩的实现原理,最后给出了两种应用方案。


参考文献:

  1. https://isux.tencent.com/introduction-of-webp.html
  2. https://developers.google.com/speed/webp/docs/compression#adaptive_block_quantization
  3. https://medium.com/@duhroach/how-webp-works-lossly-mode-33bd2b1d0670
  4. https://modpagespeed.com/doc/configuration
  5. https://juejin.im/entry/5791843bc4c9710054f55751
  6. https://aotu.io/notes/2016/06/23/explore-something-of-webp/index.html
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容