R语言之ggplot

https://www.cnblogs.com/xiaojikuaipao/p/11478780.html
http://blog.sina.com.cn/s/blog_15ff3b88f0102we75.html

一:ggplot基本语法

ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离。按图层作图,保有命令式作图的调整函数,使其更具灵活性,并将常见的统计变换融入到了绘图中。
ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图);其二,图层之间的叠加是靠“+”号实现的,越后面其图层越高。
ggplot2里的所有函数可以分为以下几类:

  • 用于运算(我们在此不讲,如fortify_,mean_等)
  • 初始化、展示绘图等命令(ggplot,plot,print等)
  • 按变量组图(facet_等)
  • 真正的绘图命令(stat_,geom_,annotate),这三类就是实现一个函数一个图层的核心函数。
  • 微调图型:严格意义上说,这一类函数不是再实现图层,而是在做局部调整。
  • aes : 同样适用于修改geom_XXX() aes参数控制了对哪些变量进行图形映射,以及映射方式
  • 图形属性(aes) 横纵坐标、点的大小、颜色,填充色等。
    完整公式总结:
ggplot(data = , aes(x = , y = )) +
geom_XXX(...) + ... + stat_XXX(...) + ... +
annotate(...) + ... + labs(...) +
scale_XXX(...) + coord_XXX(...) + guides(...) + theme(...) +
facet_XXX(...)

一个完整ggplot实例:

library(ggplot2)
attach(iris)
p <- ggplot(data=iris,aes(x = Sepal.Length,y = Sepal.Width))
p + geom_point(aes(colour = Species)) + stat_smooth() + 
labs(title = "Iris of Sepal.length \n According to the Sepal.Width") +
theme_classic() + theme_bw() +annotate("text",x=7,y=4,parse = T,label = "x[1]==x[2]",size=6, family="serif",fontface="italic", colour="darkred")
  • geom :表示几何对象,它是ggplot中重要的图层控制对象,因为它负责图形渲染的类型。
    几何对象(geom_) 上面指定的图形属性需要呈现在一定的几何对象上才能被我们看到,这些承载图形属性的对象可能是点,可能是线,可能是bar
  • stat :统计变换 比如求均值,求方差等,当我们需要展示出某个变量的某种统计特征的时候,需要用到统计变换.
  • annotate:添加注释 #由于设置的文本会覆盖原来的图中对应的位置,可以改变文本的透明度或者颜色 例: annotate(geom='text')会向图形添加一个单独的文本对象 annotate("text",x=23,y=200,parse=T,label = "x[1]==x[2]")
  • labs : labs(x = "这是 X 轴", y = "这是 Y 轴", title = "这是标题") ## 修改文字
  • scale_: 标度是一种函数,它控制了数学空间到图形元素空间的映射。一组连续数据可以映射到X轴坐标,也可以映射到一组连续的渐变色彩。一组分类数据可以映射成为不同的形状,也可以映射成为不同的大小,这就是与aes内的各种美学(shape、color、fill、alpha)调整有关的函数。
  • coord_:调整坐标,控制了图形的坐标轴并影响所有图形元素. 调整坐标 coord_flip()来翻转坐标轴。使用xlim()和ylim()来设置连续型坐标轴的最小值和最大值 coord_cartesian(xlim=c(0,100),ylim=c(0,100))
  • guides:调整所有的text。
  • theme:调整不与数据有关的图的元素的函数。theme函数采用了四个简单地函数来调整所有的主题特征:element_text调整字体,element_line调整主题内的所有线,element_rect调整所有的块,element_blank清空。theme(panel.grid =element_blank()) ## 删去网格线
  • facet :控制分组绘图的方法和排列形式

不指定数据集时,data = NULL

一个图形对象就是一个包含数据,映射,图层,标度,坐标和分面的列表,外加组件options
ggplot(数据, 映射) geom_xxx(映射, 数据) stat_xxx(映射, 数据)

通过“+”实现不同图层的相应累加,且越往后的图层表现在上方

点(point, text):往往只有x、y指定位置,有shape但没有fill
线(line,vline,abline,hline,stat_function等):一般是基于函数来处理位置
射(segment):特征是指定位置有xend和yend,表示射线方向
面(tile, rect):这类一般有xmax,xmin,ymax,ymin指定位置
棒(boxplot,bin,bar,histogram):往往是二维或一维变量,具有width属性
带(ribbon,smooth):透明是特征是透明的fill
补:包括rug图,误差棒(errorbar,errorbarh)
然后,就是按照你的需要一步步加图层了(使用“+”)。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,817评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,329评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,354评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,498评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,600评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,829评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,979评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,722评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,189评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,519评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,654评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,329评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,940评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,762评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,993评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,382评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,543评论 2 349