参考
Java排序算法(四):希尔排序
常见排序算法 - 希尔排序 (Shell Sort)
数据结构和算法(Golang实现)(22)排序算法-希尔排序
希尔排序算法是按其设计者希尔(Donald Shell)的名字命名,该算法由1959年公布,是插入排序的一种更高效的改进版本。它的作法不是每次一个元素挨一个元素的比较。而是初期选用大跨步(增量较大)间隔比较,使记录跳跃式接近它的排序位置;然后增量缩小;最后增量为 1 ,这样记录移动次数大大减少,提高了排序效率。希尔排序对增量序列的选择没有严格规定。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
- 插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率
- 但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位
假设有数组 array = [80, 93, 60, 12, 42, 30, 68, 85, 10],首先取 d1 = 4,将数组分为 4 组,如下图中相同颜色代表一组:
然后分别对 4 个小组进行插入排序,排序后的结果为:
然后,取 d2 = 2,将原数组分为 2 小组,如下图:
然后分别对 2 个小组进行插入排序,排序后的结果为:
最后,取 d3 = 1,进行插入排序后得到最终结果:
该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。因为直接插入排序在元素基本有序的情况下(接近最好情况),效率是很高的,因此希尔排序在时间效率上比前两种方法有较大提高。
public class ShellSort {
public static void main(String[] args) {
int[] arr = { 6, 5, 3, 1, 8, 7, 2, 4 };
System.out.println("排序之前:");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
// 希尔排序
shellSort(arr);
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
}
/**
* 希尔排序
*/
private static void shellSort(int[] arr) {
int j;
for (int gap = arr.length / 2; gap > 0; gap = gap / 2) {
for (int i = gap; i < arr.length; i++) {
int tmp = arr[i];
for (j = i; j >= gap && tmp < arr[j - gap]; j = j - gap) {
arr[j] = arr[j - gap];
}
arr[j] = tmp;
}
}
}
}
举个简单例子,希尔排序一个 12 个元素的数列:[5 9 1 6 8 14 6 49 25 4 6 3],增量d的取值依次为:6,3,1:
x 表示不需要排序的数
取 d = 6 对 [5 x x x x x 6 x x x x x] 进行直接插入排序,没有变化。
取 d = 3 对 [5 x x 6 x x 6 x x 4 x x] 进行直接插入排序,排完序后:[4 x x 5 x x 6 x x 6 x x]。
取 d = 1 对 [4 9 1 5 8 14 6 49 25 6 6 3] 进行直接插入排序,因为 d=1 完全就是直接插入排序了。
越有序的数列,直接插入排序的效率越高,希尔排序通过分组使用直接插入排序,因为步长比1大,在一开始可以很快将无序的数列变得不那么无序,比较和交换的次数也减少,直到最后使用步长为1的直接插入排序,数列已经是相对有序了,所以时间复杂度会稍好一点。
在最好情况下,也就是数列是有序时,希尔排序需要进行logn次增量的直接插入排序,因为每次直接插入排序最佳时间复杂度都为:O(n),因此希尔排序的最佳时间复杂度为:O(nlogn)。
在最坏情况下,每一次迭代都是最坏的,假设增量序列为:d8 d7 d6 ... d3 d2 1,那么每一轮直接插入排序的元素数量为:n/d8 n/d7 n/d6 .... n/d3 n/d2 n,那么时间复杂度按照直接插入的最坏复杂度来计算为:
假设增量序列为 ⌊N/2⌋ ,每次增量取值为比上一次的一半小的最大整数。
O( (n/d8)^2 + (n/d7)^2 + (n/d6)^2 + ... + (n/d2)^2 + n^2)
= O(1/d8^2 + 1/d7^2 + 1/d6^2 + ... + 1/d2^2 + 1) * O(n^2)
= O(等比为1/2的数列和) * O(n^2)
= O(等比求和公式) * O(n^2)
= O( (1-(1/2)^n)/(1-1/2) ) * O(n^2)
= O( (1-(1/2)^n)2 ) * O(n^2)
= O( 2-2(1/2)^n ) * O(n^2)
= O( < 2 ) * O(n^2)
所以,希尔排序最坏时间复杂度为O(n^2)。
不同的分组增量序列,有不同的时间复杂度,但是没有人能够证明哪个序列是最好的。Hibbard增量序列:1,3,7,···,2n−1是被证明可广泛应用的分组序列,时间复杂度为:Θ(n^1.5)。
希尔排序的时间复杂度大约在这个范围:O(n1.3)~O(n2),具体还无法用数学来严格证明它。
希尔排序不是稳定的,因为每一轮分组,都使用了直接插入排序,但分组会跨越n个位置,导致两个相同的数,发现不了对方而产生了顺序变化。
package main
import "fmt"
// 增量序列折半的希尔排序
func ShellSort(list []int) {
// 数组长度
n := len(list)
// 每次减半,直到步长为 1
for step := n / 2; step >= 1; step /= 2 {
// 开始插入排序,每一轮的步长为 step
for i := step; i < n; i += step {
for j := i - step; j >= 0; j -= step {
// 满足插入那么交换元素
if list[j+step] < list[j] {
list[j], list[j+step] = list[j+step], list[j]
continue
}
break
}
}
}
}
func main() {
list := []int{5}
ShellSort(list)
fmt.Println(list)
list1 := []int{5, 9}
ShellSort(list1)
fmt.Println(list1)
list2 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3}
ShellSort(list2)
fmt.Println(list2)
list3 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3, 2, 4, 23, 467, 85, 23, 567, 335, 677, 33, 56, 2, 5, 33, 6, 8, 3}
ShellSort(list3)
fmt.Println(list3)
}