论文略读(一)

一、Multi-Stage Pathological Image Classification using Semantic Segmentation

1.研究问题:

大分辨率病理图像的分辨率较大,一般的处理方法是将其拆分送进网络分类。本文认为这样做没有利用全局信息,分类性能较差,所以提出了一种利用全局信息的新思路。

2.研究思路:

经过每个小块的分类之后,每个小块都会得到一个类别的概率。类比于图像,其实每个小块都可以视为一个像素点,这样就可以考虑全局信息,故本文提出,利用每个块的特征向量,将其类别为图像的像素点,送入分割网络进行分割。

3.网络构建:

网络分为两部分,第一部分是分类网络,用于得到特征向量,第二部分为分割网络,用于得到最终的结果。如图所示:

网络框架

网络的关键在于如何优化,有两种思路,第一种思路是分别优化,即分别训练两个网络;第二个思路是进行端到端的训练,由于直接训练太过于耗费资源,文章提出只利用必要的结果,其余全部丢弃。反向传播这里使用了一种巧妙的转换,由于\frac{{\partial L}}{{\partial {W_f}}} = \frac{{\partial L}}{{\partial x}}\frac{{\partial x}}{{\partial {W_f}}},这里x是分割网络的输入,由于\frac{{\partial L}}{{\partial x}}可以直接得到,可以利用其进行第一个网络的反向传播,只需要设置第一个网络的损失函数为{L_1} = \frac{{\partial L}}{{\partial x}} \cdot x即可。

二、Scale-Aware Trident Networks for Object Detection

1.研究问题:

众多研究表明,网络的深度、下采样率以及感受野都会影响检测网络的性能,但感受野少有人讨论,本文针对于感受野,设计了适应目标尺度的网络。

2.研究思路:

目标尺度有大有小,如果采用空洞卷积可以有效扩大感受野,提升检测性能,但不适用于小目标,因此需要设计多路感受野不同的网络。

3.网络构建:

网络结构

前面公用一个网络,后面分成三个条支路,每条支路的空洞率不同。需要注意的是,这里采用了共享参数的机制,一方面能够减少参数,另一方面也可以用统一的表征能力来适应不同的尺度。之后采用了尺度感知机制训练,即不同尺度的目标送进不同支路进行训练。

三、Building Damage Detection in Satellite Imagery Using Convolutional Neural Networks

1、研究问题:

建立受灾建筑检测网络,以便及时启动相关的预案,本文并非针对网络进行创新,而是努力实现相关算法的落地。

2、任务实现流程:

1)数据集由卫星图获取,专业人员标注受灾建筑,获得正样本,负样本通过检测算法挑选。

2)数据预处理和清洗遵循最低限度,以便减少劳动力密集型的任务,及时对受灾进行响应。

3)数据集的输入经过比较,采用经过卷积处理受灾前后图片的向量差。

4)为了保证网络的泛化能力,数据集总共包含了三个,使用其中两个与第三个的一折作为训练集,第三个的其余折作为测试集。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,776评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,527评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,361评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,430评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,511评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,544评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,561评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,315评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,763评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,070评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,235评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,911评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,554评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,173评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,424评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,106评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,103评论 2 352

推荐阅读更多精彩内容