人工智能通识-科普-概率

欢迎关注我的专栏( つ•̀ω•́)つ【人工智能通识】
【汇总】2019年4月专题


关于概率、条件概率、联合概率的基本解释。

概率Probability

概率可以理解为可能性,从0到1之间,0是不可能,1是必然。A事件的概率通常写作P(A):

P(A)\in [0,1]

概率经常和随机有关,比如说“随机扔一个骰子,得到3点的概率是多少?”,“随机从班里选一个人,选到男生的概率是多少?”

随机并不一定意味着均等,比如在3这边灌了铅的骰子,投出3的概率就少很多;比如男生多女生少的班级,随机取到女生的概率也会小。

如果接下来可能发生n个事件,我们把这些事件看成一个集合,就叫做概率空间,一般用欧米伽Ω符号表示。比如扔骰子得到随机点数的概率空间就是[1,2,3,4,5,6],共有6个均匀等概率事件。

概率空间中每个事件不一定拥有均等的概率,但所有独立事件的概率之和一定是1。灌了铅的骰子可能出现6点的概率高到60%,那么另外五种点数可能之和一定是40%。

概率是个无限近似概念,比如骰子投出6点的概率是1/6,但不能说投6次就一定会出现一次6,而是说不停的投,投的次数越多,出现点数6的比例越必然接近1/6,实际上可能需要无限次投才能逼近1/6,但无限次本身就是不可能实现的概念。

联合概率Joint Probability

联合概率是事件A和事件B同时满足的概率,和条件概率的区别在于联合概率的分母是整个概率空间1。

如果A和B两个事件是独立的,那么联合概率等于A和B单独概率的乘积,例如两个骰子都投出5点的联合概率就是1/36。联合概率使用\cap符号表示,左右两者没有先后关系:

P(A\cap B)=P(A)\times P(B)

当然这个公式也是两个事件满足互相独立的必要条件。

条件概率Conditional Probability

条件概率就是事件A在事件B发生的条件下也会发生的概率。
比如说两个骰子,第一个投出5点的时候,第二个投出5点的概率是多少?这就是条件概率,第一个骰子是条件,也是划定范围P(A)(划定分数的分母),第二个骰子是满足AB两个事件的概率P(A\cap B),是分子。条件概率的条件B和A用竖线分开,P(A|B),有公式:

P(A|B)=\frac{P(A\cap B)}{P(A)}

所以,注意,条件概率的分母不是概率空间的全部,而是条件A划定的子集范围。比如上面第一个投骰子得到5的条件下,第二次也投出5点的条件概率是1/6而不是1/36。

对于两个独立事件(两个骰子互相没有关系),条件概率P(A|B)等于事件概率P(A),和条件事件发生的概率P(A)无关。

P(A|B)=P(A)

条件概率也叫后验概率。

注意,条件概率的竖线的前后关系很重要,P(A|B)P(B|A)不是一回事。P(A|B)是以P(A)作为分母,P(B|A)适宜P(B)作为分母,谁是条件谁做分母。

比如某种患病率为1%的癌症,那就意味着:
P(病) = 1\%
P(无病)=99\%

如果检测设备检测结果的假阳性概率也是1%,那就意味着:
P(检查有病|无病) = 1\%
P(检查无病|无病) = 99\%

更多内容可以参考这个文章:贝叶斯的重病筛查案例-Precision-Accuracy-Recall


欢迎关注我的专栏( つ•̀ω•́)つ【人工智能通识】


每个人的智能新时代

如果您发现文章错误,请不吝留言指正;
如果您觉得有用,请点喜欢;
如果您觉得很有用,欢迎转载~


END

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351