1. TextFile
Hive数据表的默认格式,存储方式:行存储。
可使用Gzip,Bzip2等压缩算法压缩,压缩后的文件不支持split。
但在反序列化过程中,必须逐个字符判断是不是分隔符和行结束符,因此反序列化开销会比SequenceFile高几十倍。
2. SequenceFile
Hadoop API提供的一种二进制文件,以的形式序列化到文件中,存储方式:行存储。
支持三种压缩选择:NONE,RECORD,BLOCK。
Record压缩率低,一般建议使用BLOCK压缩。
优势是文件和hadoop api中的MapFile是相互兼容的。
3. RCFile
存储方式:数据按行分块,每块按列存储。结合了行存储和列存储的优点:
首先,RCFile 保证同一行的数据位于同一节点,因此元组重构的开销很低;
其次,像列存储一样,RCFile 能够利用列维度的数据压缩,并且能跳过不必要的列读取;
RCFile的一个行组包括三个部分:
第一部分是行组头部的【同步标识】,主要用于分隔 hdfs 块中的两个连续行组
第二部分是行组的【元数据头部】,用于存储行组单元的信息,包括行组中的记录数、每个列的字节数、列中每个域的字节数
第三部分是【表格数据段】,即实际的列存储数据。在该部分中,同一列的所有域顺序存储。
从图可以看出,首先存储了列 A 的所有域,然后存储列 B 的所有域等。
数据追加:RCFile 不支持任意方式的数据写操作,仅提供一种追加接口,这是因为底层的 HDFS当前仅仅支持数据追加写文件尾部。
行组大小:行组变大有助于提高数据压缩的效率,但是可能会损害数据的读取性能,因为这样增加了 Lazy 解压性能的消耗。而且行组变大会占用更多的内存,这会影响并发执行的其他MR作业。 考虑到存储空间和查询效率两个方面,Facebook 选择 4MB 作为默认的行组大小,当然也允许用户自行选择参数进行配置。
4. ORCFile
存储方式:数据按行分块 每块按照列存储
压缩快 快速列存取
效率比rcfile高,是rcfile的改良版本
5. 自定义格式
用户可以通过实现inputformat和 outputformat来自定义输入输出格式。
6. 总结:
数据仓库的特点:一次写入、多次读取,因此,整体来看,ORCFile相比其他格式具有较明显的优势。
TextFile 默认格式,加载速度最快,可以采用Gzip、bzip2等进行压缩,压缩后的文件无法split,即并行处理
SequenceFile 压缩率最低,查询速度一般,三种压缩格式NONE,RECORD,BLOCK
RCfile 压缩率最高,查询速度最快,数据加载最慢。
#