【论文笔记】Convolutional neural network architecture for geometric matching


Abstract

本文主要做了两件事:

  1. 用深度学习方法模拟经典的图像相似度估计问题
  2. 用深度学习方法估计仿射变换参数,以及更为复杂的thin-plate spline transformation

CNN

handle large changes of appearance between the matched images

经典的相似度估计方法,比如使用SIFT获取局部特征丢弃不正确的匹配进行模糊匹配,然后将模糊匹配的结果输入到RANSAC或者Hough transform中进行精确匹配,虽然效果不错但是无法应对场景变换较大以及复杂的几何形变的情况。本文使用CNN提取特征以应对这两点不足。

  1. 用CNN特征替换原有经典特征,即使场景变换很大,也能够很好的提取特征;
  2. 设计一个匹配和变换估计层,加强模型鲁棒性。

Architecture

end-to-end
输入:两幅图片
输出:仿射变换的6个参数

这里的思路如下:先用双路CNN提取两幅图片的特征,然后用correlation-layer进行融合,这个过程可以视为模糊匹配,然后进入回归层得到具体预测出的仿射变换的6个参数。

特征提取:

使用双路CNN,输入两幅图像,权值共享。
CNN采用VGG-16,L2-norm,fine-tuning ImageNet。

Matching:

correlation-layer

我们通过双路CNN获取两幅图片的feature map:
w,h,d:分别为feature map的长、宽、深度(通道)

在进入matching阶段前,要把两路CNN提取到的特征融合为一个向量,这里使用的方法是correlation-layer。

correlation-layer

fA与fB进行点乘得到correlation map (c_{AB}
原来两个w×h的feature map ,每个1×1×d的向量通过点乘得到w×h×(w×h)这样一个立方体。立方体当中的每一个位置(i,j)表示fB中的(i,j)位置的点对应fA中所有点的相似度。这里correlation map的深度(w×h)即fA中所有点被展开成k,表示fA中点的索引。

归一化:
得到correlation map 后对相似度进行归一化,以凸显相似度高的点。我们使用ReLU+L2Norm进行归一化。为什么选用ReLU呢?考虑这两种情况:

  • 假设只有一个匹配点时,会直接将匹配值增大为1
  • 假设有多个噪声匹配点,使用ReLU会对除了最匹配的点之外的噪声点降权,提高了模型的鲁棒性。

对correlation map归一化后,我们得到了在进入回归层之前所需要的correspondence map。

使用correlation-layer的原因如下:

  • 两幅图像的相似度只需要保留其相似性以及空间位置,图像本身的特征不应该被考虑。
    假设有两对图像的仿射变换参数相同,只是图像内容不同,如果考虑feature map的像素信息,那么两幅图像进入模型后输出的参数也将不同;
  • 如果只是简单的对两幅图中每一个通道的feature进行相加或者相减,如果匹配点相差很远,这种方法无法获取正确的相似度。如果使用correlation map+Norm,即使匹配点相差很远,也能够凸显出最为匹配的点。所以这种方法无法应对场景大范围变化的匹配问题;

Regression network

Regression

这里要注意的是,进入回归层中要使用卷积层而不是全连接层。因为correlation map的参数个数是feature map大小的平方,直接用全连接参数过多将会造成梯度爆炸。


Loss function

使用每个栅格点经过使用预测参数和真实参数进行仿射变换后得到的值之间的距离作为Loss。


Loss

Dataset

人工生成数据集:

为了避免仿射变换后带来的图像的边界问题,在原始图中央截取Padded image。
在padded image的中央截取ImageA
对padded image进行仿射变换,在中央截取相同大小,获得ImageB

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容