基于RGB-D的6D目标检测算法

基于RGB-D的6D目标检测算法

本文参考了ITAIC的文章 A Review of 6D Object Pose Estimation

概览

RGB-D

这里介绍几篇经典的基于RGB-D的6D目标检测算法。

RGB-D,就是RGB + Depth,也就是彩色图像 + 深度信息。

直觉上来说,比单纯的RGB有了更多的信息,精度也会变得更加高了。

这里给出RGB部分方法的性能进行对比,RGB-D的指标是采用的ADD(-S), 所以我们就只看第3,4,5列的指标

RGB

算法REDE在Linemod、Occlusion Linemod、YCB-Video数据集上基本已经超越了所有的RGB算法。

接下来,我们主要介绍三个RGB-D算法G2LNet、PVN3D以及REDE。

G2L-Net

G2L-Net: Global to Local Network for Real-time 6D Pose Estimation with Embedding Vector Features

G2L-Net Overview

如上图所示,分成三个步骤:

  1. 全局的定位(Global Localization)

  2. 平移的定位(Translation Localization)

  3. 旋转的定位(Rotation Localization)

步骤

全局的定位

具体而言,首先将RGB图像送到CNN中,得到三个东西:边界框,类别概率图(class probability map),类别向量

文章使用的是一个YOLOv3作为2D的目标检测器

利用2D的边界框架上深度信息,就可以构造出一个个棱台(frustum proposal),只考虑棱台中包含的空间点,便减少了所需要计算的数据规模。

这里文章引入了一种3D球的约束,将点云变得更加紧致

最终输出一系列的点云,对应2D目标检测的结果

平移的定位

利用3D的点云信息,做语义分割,得到分割后的点云,即每一个空间点有自己的类别

旋转的定位

这里将类别向量引入,以点云信息作为输入,直接输出对应的旋转

PVN3D

PVN3D: A Deep Point-Wise 3D Keypoints V oting Network for 6DoF Pose Estimation

PVN3D

个人认为其主要的贡献在于结合了语义分割的技术

如上图所示,整个PVN3D可以被分成多个部分:

  • 特征抽取

  • 3D关键点检测

  • 语义分割

  • 6DoF姿态估计

特征抽取

这里使用一个卷积网络CNN和一个PointNet++分别提取RGB特征以及深度特征,然后进行特征融合。

3D关键点检测、语义分割

使用MLP来分别估计关键点的平移、中心点以及每一个点的语义类别标签

可以看到,其输出的维度分别对应3、22、3,即3个平移的偏移值,22个类别,以及3个中心点偏移值。

然后使用语义标签和中心点,使用投票Vote和聚类Cluster,得到一个实例级别的语义分割

然后将这个结果结合关键点检测,就能给这些关键点分配对应的实体

6DoF姿态估计

使用最小二乘(Least-Square Fitting)实现姿态估计,输出旋转矩阵R以及平移t

REDE

REDE: End-to-End Object 6D Pose Robust Estimation Using Differentiable Outliers Elimination

我们先来看看该方法和其他方法的区别

REDE

如上图所示,(c)是基于关键点回归的方法,(d)是REDE方法

可以看到,用CNN去做关键点的检测这一步,大家都是一样的,只不过在后面对姿态进行估计时,REDE是可差分的,能够直接反向传播到前面所有的可学习的参数上。

回想一下上面的PVN3D,在计算关键点之后,便使用最小二乘去估计姿态,估计的偏差并不会影响前面的参数,所以仍然属于(c)。

下面给出其方法的概览

REDE

从左到右:

  • 首先使用点级别的编码

    • 类似PVN3D,这里也是分别进行编码,用PSPNet抽取RGB特征,用PointNet抽取深度图信息

    • 最后将RGB特征和深度特征融合在一起,具体实现可以参考其仓库中的 lib/network.py

  • 然后使用快速点采样 (Fast Point Sample,FPS) 得到K个关键点,用网络估计这些关键点的偏移,计算L1误差

  • 这里引入一个异常偏移消除 (Outlier Offsets Elimination) 技术,对于每一个点的偏移估计,多计算一个置信度c,在计算关键点位置的时候,乘以这个置信度

  • 使用一个Minimal Solvers Bank,对每三个关键点求姿态估计,这样就可以生成 C_K^3 个姿态,提高整体的鲁棒性

  • 最后,对 C_K^3 个姿态,加权平均,通过2范数和F范数计算偏移和旋转的误差,实现可微分的误差计算

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,978评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,954评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,623评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,324评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,390评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,741评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,892评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,655评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,104评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,451评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,569评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,254评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,834评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,725评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,950评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,260评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,446评论 2 348