一文了解Count、FPKM、RPKM、TPM | 相互间的转化 | 收藏教程

PS:如果你需要本教程的练习代码和文档,可以在公众号回复“20220122”即可获得。


前言:

今早看到一篇博文,提到了FPKM与TPM间转化。我自己也系统的再次进行整理一下(PS:自己前期的基础不是很牢固,基本只是使用Count和FPKM,其它的表达丰度基本没涉及)。因此,本教程博文也是自己的一个学习笔记。也是结合很多篇博文组装出来的,记录记录!!!

---- Du


•转录组使用hisat2比对后,我们会使用featureCounts、HTseq-count等软件计算每个基因Count值(每个基因比对上的reads数),count值是最原始的,也是最接近真实的基因表达情况,是没被标准化的数值,因此,很多的差异表达分析,输入文件(input data)使用Count值。以及,后面所有的FPK、RPKM、TPM等都是依据Count值转换出来的。

•计算FPKM值,可以根据Count值进行计算,此步需要我们后期自己计算,但也是使用Stringtie软件进行计算。该软件也可以使用其脚本prepDE.py进行转化,由FPKM To Count,使用也是相对比较方便。详情到网址:StringTie (jhu.edu) - http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual


Count

定义:高通量测序中比对到exon上的reads数。可以使用featureCounts、HTseq-count等软件进行计算。

优点:可以有效说明该区域是否真的有表达及真实的表达丰度。能够近似呈现真实的表达情况。

缺点:由于exon长度不同,难以进行不同exon丰度比较;由于测序总数不同,难以对不同测序样本间比较。


FPKM

FPKM: FPKM的全称为Fragments Per Kilobase Million,Fragments Per Kilobase of exon model per Million mapped fragments(每千个碱基的转录每百万映射读取的fragments)。通俗讲,把比对到的某个基因的Fragment数目,除以基因的长度,其比值再除以所有基因的总长度。注意,这里的基因长度是指基因外显子的总长度。


RPKM

RPKM: Reads Per Kilobase of exon model per Million mapped reads (每千个碱基的转录每百万映射读取的reads);

FPKM与RPKM的区别

RPKM通常用于单端测序,FPKM常用于双端测序

如果是单端测序,那么一个fragmetns就对应了一条read,如下所示:

如果是双端测序,那么一条fragments就对应两条reads,当然,有时候双端测序也有可能出现一条fragment对应一条read(另外一条read有可能会因为质量低而被剔除),FPKM就保证了,一条fragment的两条reads不会被统计2次,如下所示:

FPKM是以fragment为准,而不是以reads数为准,它们的计算方式是一样的


RPM

定义:RPM/CPM: Reads/Counts of exon model per Million mapped reads (每百万映射读取的reads)

公式:RPM = ExonMappedReads * 10^6 /TotalMappedReads

优点:利于进行样本间比较。根据比对到基因组上的总reads count,进行标准化。即:不论比对到基因组上的总reads count是多少,都将总reads count标准化为10^6。sRNA_seq等测序长度较短的高通量测序经常采用RPM进行标准化,因为sRNA长度差异较小,18-35 nt较多,所以长度对不同的small RNAs相互比较影响较小 (优点:计算简单、方便。)。

缺点:未消除exon长度造成的表达差异,难以进行样本内exon差异表达的比较。


TPM

定义:TPM的全称为Transcripts per million,Transcripts Per Kilobase of exon model per Million mapped reads (每千个碱基的转录每百万映射读取的Transcripts)

解释:Ni为比对到第i个exon的reads数;Li为第i个exon的长度;sum(N1/L1+N2/L2 + ... + Nn/Ln)为所有 (n个)exon按长度进行标准化之后数值的和。


获得gene外显子长度!

library(GenomicFeatures)
## 导入gff3文件
txdb <- makeTxDbFromGFF("ITAG4.1_gene_models.gff", format = "gff")
## 获取外显子位置
exons_gene <- exonsBy(txdb, by = "gene")
## 去除外显子重叠部分,计算外显子长度
exons_gene_len <- lapply(exons_gene,function(x){sum(width(reduce(x)))})
exons_gene_len <- as.matrix(t(exons_gene_len))
write.csv(exons_gene_len,"tomato_gene_length_4.1.csv", row.names = T)

我使用番茄基因组4.1的注释文件,但是提取只得到100多个基因的外显子长度,不知道是哪一步出现问题。你可以使用你的物种注释文件操作一下。如果你会写编程,也是使用脚本进行提取,也是相对容易的循环就可以提取得到。


Code | 各表达量间的转化

countToTpm <- function(counts, effLen)
{
rate <- log(counts) - log(effLen)
denom <- log(sum(exp(rate)))
exp(rate - denom + log(1e6))
}

countToFpkm <- function(counts, effLen)
{
N <- sum(counts)
exp( log(counts) + log(1e9) - log(effLen) - log(N) )
}

fpkmToTpm <- function(fpkm)
{
exp(log(fpkm) - log(sum(fpkm)) + log(1e6))
}

countToEffCounts <- function(counts, len, effLen)
{
counts * (len / effLen)
}

# An example
################################################################################
cnts <- c(4250, 3300, 200, 1750, 50, 0)
lens <- c(900, 1020, 2000, 770, 3000, 1777)
countDf <- data.frame(count = cnts, length = lens)

# assume a mean(FLD) = 203.7
countDf$effLength <- countDf$length - 203.7 + 1
countDf$tpm <- with(countDf, countToTpm(count, effLength))
countDf$fpkm <- with(countDf, countToFpkm(count, effLength))
with(countDf, all.equal(tpm, fpkmToTpm(fpkm)))
countDf$effCounts <- with(countDf, countToEffCounts(count, length, effLength))

参考:

关于readsCount、RPKM/FPKM、RPM(CPM)、TPM的理解

RNA-Seq的count、RPKM/FPKM、CPM、TPM的关系

RPKM, FPKM and TPM, clearly explained | RNA-Seq Blog

StatQuest学习笔记24——RPKM FPKM TPM

如何优雅的统计基因外显子长度

Htseq Count To Fpkm | KeepNotes blog


“小杜的生信筆記”公众号、知乎、简书平台,主要发表或收录生物信息学的教程,以及基于R的分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容