基于 pytorch-openpose 实现 “多目标” 人体姿态估计

前言

还记得上次通过 MediaPipe 估计人体姿态关键点驱动 3D 角色模型,虽然节省了动作 K 帧时间,但是网上还有一种似乎更方便的方法。MagicAnimate 就是其一,说是只要提供一张人物图片和一段动作视频 (舞蹈武术等),就可以完成图片人物转视频。

于是我就去官网体验了一下,发现动作的视频长度不能超过 5 秒,当然,如果说要整长视频可以切多段处理再合成解决。主要的还是视频需要那种背景相对较纯的,不然提交表单一直报错,还有他也不能处理画面内多人物的姿态估计。

image.png

多目标人体姿态估计

为什么我要弄多目标,其实是我有次拿了一舞团的视频用 MediaPipe 检测,发现一个画面中只能采集到一个人的动作数据。虽然齐舞可能就一套动作,其他的角色模型可以复制粘贴,但是有些编舞为了好看,伴舞也会根据节奏作不同的变化。所以说对于我用来采集舞蹈数据,这个很重要了,当然他也可以用在多人互动的 AR 游戏,或用在同时培训多人的动作规范检测等等场景。

要从单一人体检测到多人体姿态估计,开始我是打算用 YOLO 对画面中的多 Person 区块读出来,然后再将这些方块遍历交给 MediaPipe 对指定区域作人物动作节点识别。但是最后发现有现成的算法,就是 pytorch-openpose,所以果断先用这个来体验了一下。

e90a56fd97cf818d60ddc8e53e5593fd_up-cde53c5f02ea856e86d42fd669822deba76.jpg

pytorch-openpose 简介

PyTorch-OpenPose 是一个基于 PyTorch 的开源库,它实现了 OpenPose 的功能,可以进行人的面部表情、躯干和四肢甚至手指的跟踪。它不仅适用于单人也适用于多人,同时具有较好的鲁棒性。要运行 PyTorch-OpenPose,需要安装支持 CUDA 的 PyTorch,以下例子有使用作者提供的预训练模型,通过拆分视频帧,绘制多人物动作线条保存图片,最后将图片合成为视频。

e2aeb1288e74b4fb8ad4e2ecb4424432_up-97a7511ababad3d7a880c5e29d3c1baec3d.jpg

环境

scikit-image
opencv-python
scipy
matplotlib
numpy

image.png

编码

帧拆分绘制

import cv2
import matplotlib.pyplot as plt
import copy
import numpy as np
import torch
from src import model
from src import util
from src.body import Body
from src.hand import Hand

body_estimation = Body('model/body_pose_model.pth')
hand_estimation = Hand('model/hand_pose_model.pth')

print(f"Torch device: {torch.cuda.get_device_name()}")

cap = cv2.VideoCapture("D:/3code/6pytorch/opencv_demo/12_open_pose/11.mp4")
cap.set(3, 640)
cap.set(4, 480)

indices = 1
while True:
    ret, oriImg = cap.read()
    if not ret:
        break

    candidate, subset = body_estimation(oriImg)

    canvas = copy.deepcopy(oriImg)
    canvas = util.draw_bodypose(canvas, candidate, subset)

    # detect hand
    hands_list = util.handDetect(candidate, subset, oriImg)

    all_hand_peaks = []
    for x, y, w, is_left in hands_list:
        peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
        peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
        peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
        all_hand_peaks.append(peaks)

    canvas = util.draw_handpose(canvas, all_hand_peaks)

    cv2.imwrite('image_out/img_{}.jpg'.format(indices), canvas)
    indices += 1

    print("images:", indices)

    # cv2.imshow('demo', canvas)#一个窗口用以显示原视频
    # if cv2.waitKey(1) & 0xFF == ord('q'):
    #     break

cap.release()
cv2.destroyAllWindows()

视频合成

from pathlib import Path
import cv2
import os

# 将视频video_path分割成图片和音频文件,保存到save_path文件夹中
def video2mp3_img(video_path, save_path, audio_path):
    def video_split(video_path, save_path):
        if not os.path.exists(save_path):
            os.makedirs(save_path)
        cap = cv2.VideoCapture(video_path)
        i = 0
        while True:
            ret, frame = cap.read()
            if ret:
                cv2.imwrite(save_path + '/' + str(i) + '.jpg', frame)
                i += 1
            else:
                break
        cap.release()

    if not os.path.exists(save_path):
        os.makedirs(save_path)

    # 视频分割
    video_split(video_path, save_path)

    # 视频转音频
    # os.system("ffmpeg -i {} -vn -acodec copy {}/audio.mp3".format(video_path, audio_path))
    os.system("ffmpeg -i {} -q:a 0 -map a {}/audio.mp3".format(video_path, audio_path))
    # 音频转wav
    # os.system("ffmpeg -i {}/audio.mp3 {}/audio.wav".format(save_path, save_path))

# 将video_imgout文件夹中的图片合成视频并且添加音频文件video_img/audio.mp3
def img2mp4(image_out, save_name):

    BASE_PATH = os.path.dirname(__file__)
    # 读取img size
    img = cv2.imread("{}/img_1.jpg".format(image_out))

    imgInfo = img.shape
    size = (imgInfo[1], imgInfo[0])

    files = []
    for dirpath, dirnames, filenames in os.walk(image_out):
        for filename in filenames:
            fileName = Path(os.path.join(dirpath, filename))
            files.append(os.path.join(dirpath, filename))

    files = [file.replace('\\', '/') for file in files]
    files.sort(key=lambda x: int(x.split('/')[-1].split('.')[0].split('_')[-1]))

    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    videoWrite = cv2.VideoWriter(f'videos/{save_name}.mp4', fourcc, 25, size)  # 写入对象 1 file name  3: 视频帧率

    for i in files:
        img = cv2.imread(str(i))
        videoWrite.write(img)

    print(f'videos/{save_name}.mp4')

    # 将video_img中的音频文件添加到视频中
    # os.system("ffmpeg -i {}/videos/{}.mp4 -c:v copy -c:a aac -strict experimental {}/videos/{}.mp4".format(BASE_PATH, save_name, BASE_PATH, save_name))

if __name__ == '__main__':
    BASE = os.path.dirname(__file__)
    video_path = os.path.join(BASE, "videos/yangguo.mp4")  # 视频路径
    save_path = os.path.join(BASE, "video_img")            # 拆解视频保存路径
    audio_path = os.path.join(BASE, "audio")               # 分离音频保存路径

    # 视频  ==> imgs
    # video2mp3_img(video_path, save_path, audio_path)

    # # imgs ==> 视频
    img2mp4("image_out", save_name='ldh')

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容