05 数据集来源问题

image.png
image.png

1 brain images

Brain images are acquired from different modalities, such as Magnetic Resonance Image (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), Ultrasound etc. The image from different modalities always be saved and archived in Digital Imaging and Communications in Medicine (DICOM) format. DICOM files are easy to handle, store, print, and transmit.

For medical analysis in supervised learning, images must be labelled manually by medical specialist or radiologist. Also, it is difficult to obtain access to these images because medical images are protected considering the privacy of the patient. Therefore, Increasing the number of brain images for training in deep learning must solve this problem, and is more difficult than natural image.

2 datasets

There are several public datasets in brain images for different diseases and modalities. We describe them in this section, including samples sizes, type of data, and the aim of building the datasets.

BRATS benchmark. The Multimodal Brain Tumor Image Segmentation (BRATS)[1].

ISLES benchmark. The Ischemic Stroke Lesion Segmentation (ISLES)[2].

ANDI Alzheimer’s Disease Neuroimaging Initiative (ANDI)[3].

ABIDE I and ABIDE II. Autism Brain Imaging Data Exchange I and II[4, 5]

IBSR Internet Brain Segmentation Repository[6].

LPBA40. LONI Probabilistic Brain Atlas Project [7, 8]

OASIS Open Access Series of Imaging Studies[9].

The Cancer Imaging Archive. TCIA is a service which de-identifies and hosts a large archive of medical images of cancer accessible for public download[10]. TCGA The Cancer Genome Atlas[11], publicly available in the TCIA

References

[1] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, and R. Wiest, “The multimodal brain tumor image segmentation benchmark (BRATS),” IEEE transactions on medical imaging, vol. 34, no. 10, pp. 1993, 2015.

[2] O. Maier, B. H. Menze, J. von der Gablentz, L. Häni, M. P. Heinrich, M. Liebrand, S. Winzeck, A. Basit, P. Bentley, and L. Chen, “ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI,” Medical image analysis, vol. 35, pp. 250-269, 2017.

[3] C. R. Jack, M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander, D. Harvey, B. B. Rtr, P. J. Britson, J. L. Whitwell, and B. A. Chadwick Ward, “The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods,” Journal of Magnetic Resonance Imaging, vol. 27, no. 4, pp. 685-691, 2010.

[4] A. Di Martino, C.-G. Yan, Q. Li, E. Denio, F. X. Castellanos, K. Alaerts, J. S. Anderson, M. Assaf, S. Y. Bookheimer, and M. Dapretto, “The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism,” Molecular psychiatry, vol. 19, no. 6, pp. 659, 2014.

[5] A. Di Martino, D. O’Connor, B. Chen, K. Alaerts, J. S. Anderson, M. Assaf, J. H. Balsters, L. Baxter, A. Beggiato, and S. Bernaerts, “Enhancing studies of the connectome in autism using the autism brain imaging data exchange II,” Scientific data, vol. 4, pp. 170010, 2017.

[6] T. Rohlfing, “Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable,” IEEE Transactions on Medical Imaging, vol. 31, no. 2, pp. 153-63, 2012.

[7] D. W. Shattuck, M. Mirza, V. Adisetiyo, C. Hojatkashani, G. Salamon, K. L. Narr, R. A. Poldrack, R. M. Bilder, and A. W. Toga, “Construction of a 3D probabilistic atlas of human cortical structures,” Neuroimage, vol. 39, no. 3, pp. 1064-1080, 2008.

[8] D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga, “Online Resource for Validation of Brain Segmentation Methods,” Neuroimage, vol. 45, no. 2, pp. 431-439, 2009.

[9] D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner, “Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults,” Journal of Cognitive Neuroscience, vol. 19, no. 9, pp. 1498-507, 2007.

[10] "The Cancer Imaging Archive," 2018; https://www.cancerimagingarchive.net/.

[11] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, J. B. Freymann, K. Farahani, and C. Davatzikos, “Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features,” Scientific Data, vol. 4, pp. 170117, 09/05, 2017.

(Generative adversarial network in medical imaging: A review)


image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,194评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,058评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,780评论 0 346
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,388评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,430评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,764评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,907评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,679评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,122评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,459评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,605评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,270评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,867评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,734评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,961评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,297评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,472评论 2 348

推荐阅读更多精彩内容