Elasticsearch 简介

声明:
本文转自我的个人博客,有兴趣的可以查看原文。
转发请注明来源。

这是一篇科普文。

1. 背景

Elasticsearch 在公司的使用越来越广,很多同事之前并没有接触过 Elasticsearch,所以,最近在公司准备了一次关于 Elasticsearch 的分享,整理成此文。此文面向 Elasticsearch 新手,老司机们可以撤了。

2. 倒排索引

先简单介绍下搜索引擎的基础数据结构倒排索引。

我们在平时,会经常使用各种各样的索引,如我们根据链接,可以找到链接里的具体文本,这就是索引。反过来,如果,如果我们能根据具体文本,找到文本存在的具体链接,这就是倒排索引,可简单理解为从文本到链接的映射。我们平时在使用Google、百度时,就是根据具体文本去找链接,这就是以倒排索引为基础的。

可参看维基百科

3. Elasticsearch 简介与基本概念

Elasticsearch is a real-time distributed search and analytics engine. It allows you to explore your data at a speed and at a scale never before possible. It is used for full-text search, structured search, analytics, and all three in combination.

在 《Elasticsearch : The Definitive Guide》里,这样介绍Elasticsearch,总的来说,Elasticsearch 是一个分布式的搜索和分析引擎,可以用于全文检索、结构化检索和分析,并能将这三者结合起来。Elasticsearch 基于 Lucene 开发,现在是使用最广的开源搜索引擎之一,Wikipedia、Stack Overflow、GitHub 等都基于 Elasticsearch 来构建他们的搜索引擎。

先介绍下 Elasticsearch 里的基本概念,下图是 Elasticsearch 插件 head 的一个截图。

Elasticsearch 插件head截图
Elasticsearch 插件head截图
  • node:即一个 Elasticsearch 的运行实例,使用多播或单播方式发现 cluster 并加入。
  • cluster:包含一个或多个拥有相同集群名称的 node,其中包含一个master node。
  • index:类比关系型数据库里的DB,是一个逻辑命名空间。
  • alias:可以给 index 添加零个或多个alias,通过 alias 使用index 和根据index name 访问index一样,但是,alias给我们提供了一种切换index的能力,比如重建了index,取名customer_online_v2,这时,有了alias,我要访问新 index,只需要把 alias 添加到新 index 即可,并把alias从旧的 index 删除。不用修改代码。
  • type:类比关系数据库里的Table。其中,一个index可以定义多个type,但一般使用习惯仅配一个type。
  • mapping:类比关系型数据库中的 schema 概念,mapping 定义了 index 中的 type。mapping 可以显示的定义,也可以在 document 被索引时自动生成,如果有新的 field,Elasticsearch 会自动推测出 field 的type并加到mapping中。
  • document:类比关系数据库里的一行记录(record),document 是 Elasticsearch 里的一个 JSON 对象,包括零个或多个field。
  • field:类比关系数据库里的field,每个field 都有自己的字段类型。
  • shard:是一个Lucene 实例。Elasticsearch 基于 Lucene,shard 是一个 Lucene 实例,被 Elasticsearch 自动管理。之前提到,index 是一个逻辑命名空间,shard 是具体的物理概念,建索引、查询等都是具体的shard在工作。shard 包括primary shard 和 replica shard,写数据时,先写到primary shard,然后,同步到replica shard,查询时,primary 和 replica 充当相同的作用。replica shard 可以有多份,也可以没有,replica shard的存在有两个作用,一是容灾,如果primary shard 挂了,数据也不会丢失,集群仍然能正常工作;二是提高性能,因为replica 和 primary shard 都能处理查询。另外,如上图右侧红框所示,shard数和replica数都可以设置,但是,shard 数只能在建立index 时设置,后期不能更改,但是,replica 数可以随时更改。但是,由于 Elasticsearch 很友好的封装了这部分,在使用Elasticsearch 的过程中,我们一般仅需要关注 index 即可,不需关注shard。

综上所述,shard、node、cluster 在物理上构成了 Elasticsearch 集群,field、type、index 在逻辑上构成一个index的基本概念,在使用 Elasticsearch 过程中,我们一般关注到逻辑概念就好,就像我们在使用MySQL 时,我们一般就关注DB Name、Table和schema即可,而不会关注DBA维护了几个MySQL实例、master 和 slave 等怎么部署的一样。

下表用Elasticsearch 和 关系数据库做了类比:

  • index => databases
  • type => table
  • field => field
  • document => record
  • mapping => schema

最后,来从 Elasticsearch 中取出一条数据(document)看看:

ES result
ES result

由index、type和id三者唯一确定一个document,_source 字段中是具体的document 值,是一个JSON 对象,有5个field组成。

4. Elasticsearch 基本使用

下面介绍下 Elasticsearch 的基本使用,这里仅介绍 Elasticsearch 能做什么,而不详细介绍语法。

4.1 基础操作

  • index:写 document 到 Elasticsearch 中,如果不存在,就创建,如果存在,就用新的取代旧的。
  • create:写 document 到 Elasticsearch 中,与 index 不同的是,如果存在,就抛出异常DocumentAlreadyExistException
  • get:根据ID取出document。
  • update:如果是更新整个 document,可用index 操作。如果是部分更新,用update操作。在Elasticsearch中,更新document时,是把旧数据取出来,然后改写要更新的部分,删除旧document,创建新document,而不是在原document上做修改。
  • delete:删除document。Elasticsearch 会标记删除document,然后,在Lucene 底层进行merge时,会删除标记删除的document。

4.2 Filter 与 Query

Elasticsearch 使用 domain-specific language(DSL)进行查询,DSL 使用 JSON 进行表示。

DSL 由一些子查询组成,这些子查询可应用于两类查询,分别是filter 和 query。

filter 正如其字面意思“过滤”所说的,是起过滤的作用,任何一个document 对 filter 来说,就是match 与否的问题,是个二值问题,0和1,没有scoring的过程。

使用query的时候,是表示match 程度问题有scroing 过程。

另外,Filter 和 Query 还有性能上的差异,Elasticsearch 底层对Filter做了很多优化,会对过滤结果进行缓存;同时,Filter 没有相关性计算过程,所以,Filter 比 Query 快。

所以,官网推荐,作为一条比较通用的规则,仅在全文检索时使用Query,其它时候都用Filter。但是,根据我们的使用情况来看,在过滤条件不是很强的情况下,缓存可能会占用较多内存,如果这些数据不是频繁使用,用空间换时间不一定划算。

4.3 一些重要的查询

在Elasticsearch 中,有几类最重要的查询子句,掌握了就可以覆盖日常90%以上的需求。

4.3.1 match_all

{"match_all":{}}

表示取出所有documents,在与filter结合使用时,会经常使用match_all。

4.3.2 match

一般在全文检索时使用,首先利用analyzer 对具体查询字符串进行分析,然后进行查询;如果是在数值型字段、日期类型字段、布尔字段或not_analyzed 的字符串上进行查询时,不对查询字符串进行分析,表示精确匹配,两个简单的例子如:

{ "match": { "tweet": "About Search" }}
{ "match": { "age":    26           }}

4.3.3 term

term 用于精确查找,可用于数值、date、boolean值或not_analyzed string,当使用term时,不会对查询字符串进行分析,进行的是精确查找。

{ "term": { "date":   "2014-09-01" }}

4.3.4 terms

terms 和 term 类似,但是,terms 里可以指定多个值,只要doc满足terms 里的任意值,就是满足查询条件的。与term 相同,terms 也是用于精确查找。

{ "terms": { "tag": [ "search", "full_text", "nosql" ] }}

注意,terms 表示的是contains 关系,而不是 equals关系。

4.3.5 range

类比数据库查找的范围查找,举个简单的例子:

{
    "range": {
        "age": {
            "gte":  20,
            "lt":   30
        }
    }
}

操作符可以是:

  • gt:大于
  • gte:大于等于
  • lt:小于
  • lte:小于等于

4.3.6 exists 和 missing

exists 用于查找字段含有一个或多个值的document,而missing用于查找某字段不存在值的document,可类比关系数据库里的 is not null (exists) 和 is null (missing).

{
    "exists":   {
        "field":    "title"
    }
}

4.3.7 bool

前面讲的都是些最原子的查询子句,那么,怎么实现复合查询呢?Elasticsearch 使用bool 子句来将各种子查询关联起来,组成布尔表达式,bool 子句可以随意组合、嵌套。

bool子句主要包括:

  1. must:表示必须匹配。
  2. must_not:表示一定不能匹配。
  3. should:表示可以匹配,类似于布尔运算里的"或"。如果bool 子句里,没有must子句,那么,should子句里至少匹配一个,如果有must子句,那么,should子句至少匹配零个。可以使用minimum_should_match 来对最小匹配数进行设置。
{
    "bool" : {
        "must" : {
            "term" : { "user" : "kimchy" }
        },
        "must_not" : {
            "range" : {
                "age" : { "from" : 10, "to" : 20 }
            }
        },
        "should" : [
            {
                "term" : { "tag" : "wow" }
            },
            {
                "term" : { "tag" : "elasticsearch" }
            }
        ],
        "minimum_should_match" : 1,
        "boost" : 1.0
    }
}

4.4 聚合功能

前面说的都是 Elasticsearch 当做搜索引擎使用,Elasticsearch 还可以作为分析引擎使用。

和 MySQL 等关系数据库类似,Elasticsearch 有聚合操作,而且,可作用于大量数据,提供实时的分析结果,速度快;同时,聚合操作可以与搜索结合使用,例如将聚合作用于搜索结果等。总之,Elasticsearch的聚合功能十分强大,有很多公司利用 Elasticsearch 来做分析,其中,广泛使用的 ELK(Elasticsearch + Logstash + Kibana),Kibana的数据显示和分析功能就是基于 Elasticsearch 的聚合功能做的。

具体可参看 Elasticsearch: The Definitive Guide

4.5 Geolocation

Elasticsearch 还提供了基于地理位置的搜索,而且能将地理位置与全文检索、结构化搜索、分析等结合起来使用,比如查找距离某点一定范围内的符合搜索条件的地点、计算两点的距离、判断两个形状是否相交或包含等。

具体参考 Elasticsearch: The Definitive Guide

5. Elasticsearch 使用时注意的几个问题

深度分页问题:Elasticsearch 作为一个分布式搜索与分析引擎,深度分页问题会带来严重的问题,给CPU、内存、IO、网络带来巨大压力,所以,在Elasticsearch 不建议使用深度分页,如果要遍历数据,可以采用 SCROLL的方式,可参考我另一篇博客

排序问题:根据某field排序时,Elasticsearch 会将这个 field 的所有值给加载到内存,然后,这部分数据会常驻内存,如果数据量大或排序字段多,就会给系统带来巨大压力,所以,在使用 field 进行排序时,要慎重。不过,在Elasticsearch 2.X版本,开始使用 doc value 来优化这部分。

terms 问题: terms 里可以传多个值,但是,量不能太多,搜索引擎的基本数据结构是倒排索引,terms 里传多个值,原理上来说是查很多的倒排索引,量大了也会给系统带来很大压力。

6 总结

本文是一篇 Elasticsearch 的入门文章,涵盖的是一些基本概念,篇幅有限,并不深入,如DSL的具体语法、聚合功能等都点到为止,希望大家知道的是Elasticsearch能干什么,具体要做的时候,再去详查就好了。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,123评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,031评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,723评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,357评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,412评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,760评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,904评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,672评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,118评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,456评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,599评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,264评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,857评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,731评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,956评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,286评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,465评论 2 348

推荐阅读更多精彩内容