知识图谱的应用

知识图谱是基于图的数据结构,它的存储方式主要有两种形式:RDF存储格式和图数据库(Graph Database)。
知识的推理可以理解成“链接预测”,也就是从已有的关系图谱里推导出新的关系或链接。
对于每一个搜索的关键词,我们可以通过知识图谱来返回更丰富,更全面的信息。比如搜索一个人的身份证号,我们的智能搜索引擎可以返回与这个人相关的所有历史借款记录、联系人信息、行为特征和每一个实体的标签(比如黑名单,同业等)。另外,可视化的好处不言而喻,通过可视化把复杂的信息以非常直观的方式呈现出来, 使得我们对隐藏信息的来龙去脉一目了然。
在大数据时代,很多数据都是未经处理过的非结构化数据,比如文本、图片、音频、视频等。特别在互联网金融行业里,我们往往会面对大量的文本数据。怎么从这些非结构化数据里提取出有价值的信息是一件非常有挑战性的任务,这对掌握的机器学习,数据挖掘,自然语言处理能力提出了更高的门槛。

image.png

常用的推理算法包括基于逻辑(Logic) 的推理和基于分布式表示方法(Distributed Representation)的推理。随着深度学习在人工智能领域的地位变得越来越重要,基于分布式表示方法的推理也成为目前研究的热点。
所谓的生态闭环,指的是构建有效的自反馈系统使其能够实时地反馈给我们的模型,并使得模型不断地自优化从而提升准确率。
https://www.jiqizhixin.com/articles/2015-12-01-4
知识图谱的发展概述 https://www.jiqizhixin.com/articles/2017-11-03-24
美团餐饮娱乐知识图谱——美团大脑揭秘 https://www.jiqizhixin.com/articles/2018-11-23-16
美团NLP中心开始构建大规模的餐饮娱乐知识图谱——美团大脑,它将充分挖掘关联各个场景数据,用AI技术让机器“阅读”用户评论数据,理解用户在菜品、价格、服务、环境等方面的喜好,挖掘人、店、商品、标签之间的知识关联,从而构建出一个“知识大脑”。
海量数据和大规模分布式计算力,催生了以深度学习为代表的第三次(1993-目前)人工智能高潮。
缺乏可解释性
常识(Common Sense)缺失
缺乏语义理解
依赖大量样本数据
image.png

知识究竟是什么呢?知识就是有结构的信息。人从数据中提取有效信息,从信息中提炼有用知识,信息组织成了结构就有了知识。知识工程,作为代表人工智能发展的主要研究领域之一,就是机器仿照人处理信息积累知识运用知识的过程。而知识图谱就是知识工程这一领域数十年来的代表性研究方向。
图谱中知识被组织成<主,谓,宾>三元组的形式,来表征客观世界中的实体和实体之间的关系。比如像名人的维基百科词条页面中,Infobox卡片都会描述该名人的国籍信息,其结构就是<人,国籍,国家>这样的三元组。
image.png

微软于2010年开始构建Satori知识图谱来增强Bing搜索;Google在2012年提出 Knowledge Graph概念,用图谱来增强自己的搜索引擎;2013年Facebook发布Open Graph应用于社交网络智能搜索;2015年阿里巴巴开始构建自己的电商领域知识图谱;2016年Amazon也开始构建知识图谱。
image.png

美团大脑将充分挖掘关联各个场景数据,用AI技术让机器“阅读”用户评论和行为数据,理解用户在菜品、价格、服务、环境等方面的喜好,构建人、店、商品、场景之间的知识关联,从而形成一个“知识大脑”。相比于深度学习的“黑盒子”,知识图谱具有很强的可解释性,在美团跨场景的多个业务中应用性非常强,目前已经在搜索、金融等场景中初步验证了知识图谱的有效性。近年来,深度学习和知识图谱技术都有很大的发展,并且存在一种互相融合的趋势,在美团大脑知识构建过程中,我们也会使用深度学习技术,把数据背后的知识挖掘出来,从而赋能业务,实现智能化的本地生活服务,帮助每个人“Eat Better, Live Better”。

知识图谱技术链

image.png

知识获取是指从不同来源、不同结构数据中,抽取相关实体、属性、关系、事件等知识。
大多数知识图谱是以符号化的方法表示,其中RDF是最常用的符号语义表示模型,其一条边对于一个三元组<主语Subject,谓语Predicate,宾语Object>,表达一个客观事实,该方法直观易懂,具备可解释性,支持推理。
而随着深度学习的发展,基于向量表示的Embedding算法逐渐兴起,其为每个实体与关系训练一个可表征的向量,该方法易于进行算法学习
image.png

image.png

https://tech.meituan.com/2018/11/01/meituan-ai-nlp.html
能够提供“千人千面”的个性化排序和个性化推荐
比如整个美团大脑的知识图谱在百亿的量级,这也是世界上最大的餐饮娱乐知识图谱,为了支撑这个知识图谱,我们需要去研究千亿级别的图存储和计算引擎技术。我们也正在搭建一个超大规模的 GPU 集群,来支持海量数据的深度学习算法。未来,当所有的这些技术都成熟之后,我们还希望能够为所有用户提供“智慧餐厅”和“智能助理”的体验。
https://tech.meituan.com/2019/01/17/dianping-search-deeplearning.html
https://www.jiqizhixin.com/articles/2017-03-20







©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,194评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,058评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,780评论 0 346
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,388评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,430评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,764评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,907评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,679评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,122评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,459评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,605评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,270评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,867评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,734评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,961评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,297评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,472评论 2 348

推荐阅读更多精彩内容