数据挖掘实践任务1

任务1 - 数据分析(2天)

说明:这份数据集是金融数据(非原始数据,已经处理过了),我们要做的是预测贷款用户是否会逾期。表格中 "status" 是结果标签:0表示未逾期,1表示逾期。

要求:数据切分方式 - 三七分,其中测试集30%,训练集70%,随机种子设置2018

任务1:对数据进行探索和分析。时间:2天

  • 数据类型的分析
  • 无关特征删除
  • 数据类型转换
  • 缺失值处理
  • ……以及你能想到和借鉴的数据分析处理

我的结果

主要步骤
1.删除重复行;
2.无关特征删除: 删除无关信息列,删除值全一致的列;
3.数据类型转换:利用pandas实现one hot encode的方式,转换枚举类型的object为int;
4.缺失值处理:有特殊含义填0或1,没有特殊含义填众数;
5.切分数据:测试集30%,训练集70%,随机种子设置2018;

#!/usr/bin/python
# -*- coding:utf-8 -*-
from sklearn.model_selection import train_test_split
import pandas as pd
data = pd.read_csv('data.csv', encoding='gbk')


# 1.删除重复行;
data_clean = data.drop_duplicates()

# 2.无关特征删除: 删除无关信息列,删除值全一致的列;
drop_columns = ['Unnamed: 0', 'trade_no', 'id_name', 'bank_card_no',
             'query_org_count', 'query_finance_count', 'query_cash_count', 'latest_query_time', ]

for data_col in data.columns:
    if len(data[data_col].unique()) == 1 and data_col not in drop_columns:
        drop_columns.append(data_col)

data_clean = data_clean.drop(drop_columns, axis=1)

# 3.数据类型转换:利用pandas实现one hot encode的方式,转换枚举类型的object为int;
data_clean = pd.get_dummies(data_clean, columns=['reg_preference_for_trad'])

# 4.缺失值处理:有特殊含义填0或1,没有特殊含义填众数;
data_clean['student_feature'].fillna(0, inplace=True)

data_cols = data_clean.columns.values

for data_col in data_cols:
    fill_value = data_clean[data_col].value_counts().index[0]
    data_clean[data_col].fillna(fill_value, inplace=True)

# 5.切分数据:测试集30%,训练集70%,随机种子设置2018
train_data, test_data = train_test_split(data_clean, test_size=0.3, random_state=2018)
train_data.to_csv('training.csv', index=False, header=True)
test_data.to_csv('testing.csv', index=False, header=True)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,743评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,296评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,285评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,485评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,581评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,821评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,960评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,719评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,186评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,516评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,650评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,329评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,936评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,757评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,991评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,370评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,527评论 2 349