初识树

数据结构中有很多树的结构,其中包括二叉树、二叉搜索树、2-3树、红黑树等等。今天讲最简单的二叉树:

比较重要的相关术语

度(Degree):一个节点拥有的子树数量就是节点的度。
叶子节点(Leaf):度为0的节点。
深度:树中节点的最大层次

二叉树(BinaryTree)

二叉树是数据结构中一种重要的数据结构,也是树表家族最为基础的结构。
二叉树的定义:二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2i-1个结点;深度为k的二叉树至多有2k-1个结点;对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。

image.png

满二叉树和完全二叉树:

满二叉树:除最后一层无任何子节点外,每一层上的所有结点都有两个子结点。也可以这样理解,除叶子结点外的所有结点均有两个子结点。节点数达到最大值,所有叶子结点必须在同一层上。

满二叉树的性质:

  1. 一颗树深度为h,最大层数为k,深度与最大层数相同,k=h;

  2. 叶子数为2h;

  3. 第k层的结点数是:2k-1;

  4. 总结点数是:2k-1,且总节点数一定是奇数。

完全二叉树:若设二叉树的深度为h,除第 h 层外,其它各层 (1~(h-1)层) 的结点数都达到最大个数,第h层所有的结点都连续集中在最左边,这就是完全二叉树。


image.png

他们的 对应关系为一个满二叉树一定是一个完全二叉树,一个完全二叉树不一定是一个满二叉树。

二叉树的遍历

二叉树的遍历分前序遍历(DLR)、中序遍历(LDR)、后序遍历(LRD)。对于二叉树的每个节点而言,遍历都有三个对象,分别是本身、左子、右子,而所谓的前中后,指的就是本身在遍历中的位置,所以前序遍历就是先访问本身,再左右子,中序遍历就是先左子再本身再右子,后序则是先左右子再本身。
关于缩写,我是比较好奇的,D(Degree)L(left child)R(right child)查阅到的英文是这样,暂时这么记。

talk is cheap show me the code(少废话,放码过来)

定义一个二叉树

public class BTreeNode<E> {
    E data;
    BTreeNode<E> left;
    BTreeNode<E> right;

    public BTreeNode(E data, BTreeNode<E> left, BTreeNode<E> right) {
        this.data = data;
        this.left = left;
        this.right = right;
    }
}

遍历方式

     /**
     * 前序遍历
     * */
    public static <E> void dlrTraverse(BTreeNode<E> root){
        if(root == null)
            return;
        println(root.data.toString());
        dlrTraverse(root.left);
        dlrTraverse(root.right);
    }
    /**
     * 中序遍历
     * */
    public static <E> void ldrTraverse(BTreeNode<E> root){
        if(root == null)
            return;
        ldrTraverse(root.left);
        println(root.data.toString());
        ldrTraverse(root.right);
    }
    /**
     * 后序遍历
     * */
    public static <E> void lrdTraverse(BTreeNode<E> root){
        if(root == null)
            return;
        lrdTraverse(root.left);
        lrdTraverse(root.right);
        println(root.data.toString());
    }

本文代码块引用 怀念小兔 代码。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,423评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,147评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,019评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,443评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,535评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,798评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,941评论 3 407
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,704评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,152评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,494评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,629评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,295评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,901评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,742评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,978评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,333评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,499评论 2 348

推荐阅读更多精彩内容

  • 目录 1、什么是树 2、相关术语 3、二叉树 3.1、二叉树的类型 3.2、二叉树的性质 3.3、二叉树的结构 3...
    我哈啊哈啊哈阅读 2,538评论 0 10
  • 一些概念 数据结构就是研究数据的逻辑结构和物理结构以及它们之间相互关系,并对这种结构定义相应的运算,而且确保经过这...
    Winterfell_Z阅读 5,697评论 0 13
  • 前言 树是数据结构中的重中之重,尤其以各类二叉树为学习的难点。一直以来,对于树的掌握都是模棱两可的状态,现在希望通...
    MrHorse1992阅读 353,487评论 51 536
  • B树的定义 一棵m阶的B树满足下列条件: 树中每个结点至多有m个孩子。 除根结点和叶子结点外,其它每个结点至少有m...
    文档随手记阅读 13,199评论 0 25
  • 花一学期维护简历,花一个月收集招聘信息,花两周准备考试。面试四家,城南城北,不是在面试的路上,就是在教室一遍遍地刷...
    云之鸢阅读 462评论 1 3