Task02 - 掌握基本的回归模型

线性回归及其推广

选择度量模型性能的指标,一般有:

线性回归的推广

当数据存在非线性关系时,我们使用线性回归模型进行预测会导致预测性能极其低下,因为模型的形式本身是线性的,无法表达数据中的非线性关系。我们一个很自然的想法就是去推广线性回归模型,使得推广后的模型更能表达非线性的关系

多项式回归

tips:多项式的阶数d不能取过大,一般不大于3或者4,因为d越大,多项式曲线就会越光滑,在X的边界处有异常的波动(边界处的置信区间会扩大到很大),并且容易造成过拟合,使预测效果的稳定性下降。

在sklearn中的实现:

参考网址:

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html?highlight=poly#sklearn.preprocessing.PolynomialFeatures

广义可加模型(GAM)

GAM模型的优点与不足:

优点:简单容易操作,能够很自然地推广线性回归模型至非线性模型,使得模型的预测精度有所上升;由于模型本身是可加的,因此GAM还是能像线性回归模型一样把其他因素控制不变的情况下单独对某个变量进行推断,极大地保留了线性回归的易于推断的性质。

缺点:GAM模型会经常忽略一些有意义的交互作用,比如某两个特征共同影响因变量,不过GAM还是能像线性回归一样加入交互项𝑥(𝑖) × 𝑥(𝑗)的形式进行建模;但是GAM模型本质上还是一个可加模型,如果我们能摆脱可加性模型形式,可能还会提升模型预测精度,详情请看后面的算法。

GAM的实现:

参考网址:

https://github.com/dswah/pyGAM/blob/master/doc/source/notebooks/quick_start.ipynb

回归树

基于树的回归方法主要是依据分层和分割的方式将特征空间划分为一系列简单的区域。对某个给定的待预测的自变量,用他所属区域中训练集的平均数或者众数对其进行预测。由于划分特征空间的分裂规则可以用树的形式进行概括,因此这类方法称为决策树方法。决策树由结点(node)和有向边(diredcted edge)组成。结点有两种类型:内部结点(internal node)和叶结点(leaf node)。内部结点表示一个特征或属性,叶结点表示一个类别或者某个值。区域𝑅1 , 𝑅2等称为叶节点,将特征空间分开的点为内部节点。

回归树与线性模型的比较:

那问题来了,哪种模型更优呢?这个要视具体情况而言,如果特征变量与因变量的关系能很好的用线性关系来表达,那么线性回归通常有着不错的预测效果,拟合效果则优于不能揭示线性结构的回归树。反之,如果特征变量与因变量的关系呈现高度复杂的非线性,那么树方法比传统方法更优。

树模型的优缺点:

树模型的解释性强,在解释性方面可能比线性回归还要方便。

树模型更接近人的决策方式。

树模型可以用图来表示,非专业人士也可以轻松解读。

树模型可以直接做定性的特征而不需要像线性回归一样哑元化。

树模型能很好处理缺失值和异常值,对异常值不敏感,但是这个对线性模型来说却是致命的。

树模型的预测准确性一般无法达到其他回归模型的水平,但是改进的方法很多。

回归树在sklearn中的实现:

参考网址:

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html?highlight=tree#sklearn.tree.DecisionTreeRegressor


支持向量机回归(SVR)

SVR与线性模型的比较:

在线性回归的理论中,每个样本点都要计算平方损失,但是SVR却是不一样的。SVR为:落在𝑓(𝑥)的𝜖邻域空间中的样本点不需要计算损失,这些都是预测正确的,其余的落在𝜖域空间以外的样本才需要计算损失(如下图所示),因此:

SVR在sklearn中的实现:

参考网址:

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html?highlight=svr#sklearn.svm.SVR

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,270评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,489评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,630评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,906评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,928评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,718评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,442评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,345评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,802评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,984评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,117评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,810评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,462评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,011评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,139评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,377评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,060评论 2 355

推荐阅读更多精彩内容