单细胞交响乐19-实战二 STRT-Seq

刘小泽写于2020.7.19
为何取名叫“交响乐”?因为单细胞分析就像一个大乐团,需要各个流程的协同配合
单细胞交响乐1-常用的数据结构SingleCellExperiment
单细胞交响乐2-scRNAseq从实验到下游简介
单细胞交响乐3-细胞质控
单细胞交响乐4-归一化
单细胞交响乐5-挑选高变化基因
单细胞交响乐6-降维
单细胞交响乐7-聚类分群
单细胞交响乐8-marker基因检测
单细胞交响乐9-细胞类型注释
单细胞交响乐9-细胞类型注释
单细胞交响乐10-数据集整合后的批次矫正
单细胞交响乐11-多样本间差异分析
单细胞交响乐12-检测Doublet
单细胞交响乐13-细胞周期推断
单细胞交响乐14-细胞轨迹推断
单细胞交响乐15-scRNA与蛋白丰度信息结合
单细胞交响乐16-处理大型数据
单细胞交响乐17-不同单细胞R包的数据格式相互转换
单细胞交响乐18-实战一 Smart-seq2

1 前言

前面的种种都是作为知识储备,但是不实战还是记不住前面的知识
这是第二个实战练习

使用了一个存在异质性的数据集,是研究小鼠大脑的 (Zeisel et al. 2015)

其中大约包含3000个细胞,包括少突胶质细胞,小胶质细胞和神经元等,使用的细胞分离平台是Fluidigm C1微流控系统,属于比较早期的系统【单细胞测序的知识

文库制备时加入了UMI

UMI简单解释:
UMI就是为了去除PCR扩增偏差的。一般一个基因对应多个UMI时,出现多个reads含有同一个UMI时,这里只计数一次。

UMI英文解释:
Each transcript molecule can only produce one UMI count but can yield many reads after fragmentation

UMI详细解释:
不管是bulk RNA还是scRNA,都需要进行PCR扩增,但是不可避免有一些转录本会被扩增太多次,超过了真实表达量。当起始文库很小时(比如单细胞数据),就需要更多次的PCR过程,这个次数越多,引入的误差就越大。UMI就是Unique Molecular Identifier,由4-10个随机核苷酸组成,在mRNA反转录后,进入到文库中,每一个mRNA随机连上一个UMI,根据PCR结果可以计数不同的UMI,最终统计mRNA的数量。

UMI图片解释:


UMI有几个要求:

  • 不能是均聚物 ,如AAAAAAAAAA
  • 不能有N碱基
  • 不能包含碱基质量低于10的碱基

2 数据准备

# 自己下载
library(scRNAseq)
sce.zeisel <- ZeiselBrainData()
# 或者使用之前分享的RData
load('sce.zeisel.RData')

sce.zeisel
# class: SingleCellExperiment 
# dim: 20006 3005 
# metadata(0):
#   assays(1): counts
# rownames(20006): Tspan12 Tshz1 ... mt-Rnr1
# mt-Nd4l
# rowData names(1): featureType
# colnames(3005): 1772071015_C02 1772071017_G12
# ... 1772066098_A12 1772058148_F03
# colData names(10): tissue group # ...
# level1class level2class
# reducedDimNames(0):
#   altExpNames(2): ERCC repeat

看到这么几个信息:2万多基因,3005个样本;只有原始count矩阵;使用了symbol ID;加入了ERCC

# 有57个ERCC
> dim(altExp(sce.zeisel,'ERCC'))
[1]   57 3005

# 而且已经标注了线粒体基因
> table(rowData(sce.zeisel))

endogenous       mito 
     19972         34 

一个重要操作:aggregateAcrossFeatures

英文解释是:Sum together expression values (by default, counts) for each feature set in each cell.
但是只看说明还是不好理解,举个例子:

可以看到下面会有很多基因具有多个loc

比如OTTMUSG00000016609_loc4OTTMUSG00000016609_loc3 其实可以算作一个基因

head(rownames(sce.zeisel)[grep("_loc[0-9]+$",rownames(sce.zeisel))])
# [1] "Syne1_loc2"              "Hist1h2ap_loc1"         
# [3] "Inadl_loc1"              "OTTMUSG00000016609_loc4"
# [5] "OTTMUSG00000016609_loc3" "Gm5643_loc2" 

# 这样的有300多个
> length(grep("_loc[0-9]+$",rownames(sce.zeisel)))
[1] 330
如果拿一个基因来看

Syne1有Syne1_loc1和Syne1_loc2

> length(grep("Syne1",rownames(sce.zeisel)))
[1] 2

counts(sce.zeisel)[grep("Syne1",rownames(sce.zeisel)),][1:2,1:3]
# 1772071015_C02 1772071017_G12 1772071017_A05
# Syne1_loc2             11              2              4
# Syne1_loc1              0              0              4
如果使用这个函数,会有怎样效果
test <- aggregateAcrossFeatures(sce.zeisel, 
                                      id=sub("_loc[0-9]+$", "", rownames(sce.zeisel)))
# 只剩一个了,也就是合二为一
> length(grep("Syne1",rownames(test)))
[1] 1

# 看表达量,也是合二为一
> counts(test)[grep("Syne1",rownames(test)),][1:3]
1772071015_C02 1772071017_G12 1772071017_A05 
            11              2              8 

因此,明白了,这个函数就是处理相同行:把几个相同的行的值加在一起变为一行

也就明白了,下面👇为什么要进行sub操作,其实就是为了把loc去掉,暴露出相同的基因名,才能执行aggregateAcrossFeatures函数

sce.zeisel <- aggregateAcrossFeatures(sce.zeisel, 
                                      id=sub("_loc[0-9]+$", "", rownames(sce.zeisel)))

> dim(sce.zeisel)
[1] 19839  3005

再添加Ensembl ID

library(org.Mm.eg.db)
rowData(sce.zeisel)$Ensembl <- mapIds(org.Mm.eg.db, 
    keys=rownames(sce.zeisel), keytype="SYMBOL", column="ENSEMBL")

3 质控

还是备份一下,把unfiltered数据主要用在质控的探索上

unfiltered <- sce.zeisel

这个公共数据的作者在发表文章时将数据的低质量细胞去掉了,但并不妨碍我们做个质控,也可以看看它去除的怎样

stats <- perCellQCMetrics(sce.zeisel, subsets=list(
    Mt=rowData(sce.zeisel)$featureType=="mito"))
qc <- quickPerCellQC(stats, percent_subsets=c("altexps_ERCC_percent", 
    "subsets_Mt_percent"))
sce.zeisel <- sce.zeisel[,!qc$discard]

> sum(qc$discard)
[1] 189

> dim(sce.zeisel)
[1] 19839  2816
根据原来的数据,加上质控标准作图
colData(unfiltered) <- cbind(colData(unfiltered), stats)
unfiltered$discard <- qc$discard
# 做个图
gridExtra::grid.arrange(
    plotColData(unfiltered, y="sum", colour_by="discard") +
        scale_y_log10() + ggtitle("Total count"),
    plotColData(unfiltered, y="detected", colour_by="discard") +
        scale_y_log10() + ggtitle("Detected features"),
    plotColData(unfiltered, y="altexps_ERCC_percent",
        colour_by="discard") + ggtitle("ERCC percent"),
    plotColData(unfiltered, y="subsets_Mt_percent",
        colour_by="discard") + ggtitle("Mito percent"),
    ncol=2
)
再看下文库大小和ERCC分别和线粒体含量的关系
gridExtra::grid.arrange(
    plotColData(unfiltered, x="sum", y="subsets_Mt_percent",
        colour_by="discard") + scale_x_log10(),
    plotColData(unfiltered, x="altexps_ERCC_percent", y="subsets_Mt_percent",
        colour_by="discard"),
    ncol=2
)
然后检查一下被过滤的原因
##              low_lib_size            low_n_features high_altexps_ERCC_percent 
##                         0                         3                        65 
##   high_subsets_Mt_percent                   discard 
##                       128                       189

4 归一化

这里细胞数量较多,因此需要预先分群+去卷积计算size factor

library(scran)
set.seed(1000)
clusters <- quickCluster(sce.zeisel)
sce.zeisel <- computeSumFactors(sce.zeisel, cluster=clusters) 
sce.zeisel <- logNormCounts(sce.zeisel)
summary(sizeFactors(sce.zeisel))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.119   0.486   0.831   1.000   1.321   4.509
看看两种归一化方法的差异
# 常规:最简单的只考虑文库大小
summary(librarySizeFactors(sce.zeisel))
# Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
# 0.1757  0.5680  0.8680  1.0000  1.2783  4.0839 

plot(librarySizeFactors(sce.zeisel), sizeFactors(sce.zeisel), pch=16,
    xlab="Library size factors", ylab="Deconvolution factors", log="xy")

5 找高变异基因

理论上,应该对每个细胞都标记批次信息,添加block信息。但是这里由于技术不同,每个板子上只有20-40个细胞,并且细胞群体具有高度异质性,不能假设每个板上的细胞类型的分布是相同的,因此这里不使用block将批次信息“锁住”是合适的

既然有ERCC,就可以用第三种方法【在之前单细胞交响乐5-挑选高变化基因的2.3 考虑技术噪音】:

dec.zeisel <- modelGeneVarWithSpikes(sce.zeisel, "ERCC")
top.hvgs <- getTopHVGs(dec.zeisel, prop=0.1)
> length(top.hvgs)
[1] 1816

同样使用了spike-in,对比一下,看到这里不管总体方差还是技术因素方差都要比之前smart-seq2要小。

smart-seq2是按read计数,这里由于添加了UMI,是按molecule计数,也就是说,UMI的加入,确实减少了PCR扩增的偏差影响

另外图中看到,这里STRT-seq的spike-in方差一直要比内源基因的方差小,也就是说内源基因的变化幅度一直保持高位,体现了数据中包含多种细胞类型而导致的异质性,异质性导致了基因表达极度不均衡

6 降维

library(BiocSingular)
set.seed(101011001)
sce.zeisel <- denoisePCA(sce.zeisel, technical=dec.zeisel, subset.row=top.hvgs)
sce.zeisel <- runTSNE(sce.zeisel, dimred="PCA")

看一下得到的PC数

ncol(reducedDim(sce.zeisel, "PCA"))
## [1] 50

7 聚类

snn.gr <- buildSNNGraph(sce.zeisel, use.dimred="PCA")
colLabels(sce.zeisel) <- factor(igraph::cluster_walktrap(snn.gr)$membership)

看一下结果

table(colLabels(sce.zeisel))
## 
##   1   2   3   4   5   6   7   8   9  10  11  12  13  14 
## 283 451 114 143 599 167 191 128 350  70 199  58  39  24

画图

plotTSNE(sce.zeisel, colour_by="label")

8 找marker基因并解释结果

主要还是关注上调基因,可以帮我们快速判断出异质性群体中各个细胞类型的差异

比如还是针对cluster1看看

markers <- findMarkers(sce.zeisel, direction="up")
marker.set <- markers[["1"]]

> ncol(marker.set)
[1] 17

> colnames(marker.set)
 [1] "Top"           "p.value"       "FDR"           "summary.logFC" "logFC.2"       "logFC.3"       "logFC.4"      
 [8] "logFC.5"       "logFC.6"       "logFC.7"       "logFC.8"       "logFC.9"       "logFC.10"      "logFC.11"     
[15] "logFC.12"      "logFC.13"      "logFC.14"  


head(marker.set[,1:8], 10) 
使用cluster1的Top10基因(但不一定只是10个)画热图
top.markers <- rownames(marker.set)[marker.set$Top <= 10]
> length(top.markers)
[1] 58

plotHeatmap(sce.zeisel, features=top.markers, order_columns_by="label")

接下来就是根据背景知识了,比如看到Gad1、Slc6a1表达量都很高,可能表明cluster1属于中间神经元

另一种方法:基于logFC

比如可以挑出cluster1的计算结果marker.set中前50个基因(这里就是50个,而不是Top50),然后根据cluster1与其他clusters的logFC,对每个基因表达量做热图

library(pheatmap)
logFCs <- getMarkerEffects(marker.set[1:50,])
pheatmap(logFCs, breaks=seq(-5, 5, length.out=101))

那么这个函数到底做了什么呢?看图就知道:

也就是把每个基因在其他clusters的logFC结果挑出来,汇集成了一个新矩阵,我们自己手动也是可以做到的


欢迎关注我们的公众号~_~  
我们是两个农转生信的小硕,打造生信星球,想让它成为一个不拽术语、通俗易懂的生信知识平台。需要帮助或提出意见请后台留言或发送邮件到jieandze1314@gmail.com

Welcome to our bioinfoplanet!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,270评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,489评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,630评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,906评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,928评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,718评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,442评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,345评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,802评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,984评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,117评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,810评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,462评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,011评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,139评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,377评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,060评论 2 355