数据结构 - 二叉树

image.png

一棵树可以没有任何节点称为空树,可以只有一个节点root
一棵树可以分为多个子树组合,二叉树有左子树、右子树。
节点的度:这个节点子树的个数。上图的节点1度为5,节点2的度为2。
树的度:所有节点度中的最大值,上图的树的度为5
叶子节点:度为0的节点
层数:根节点在第一层,根节点的子节点在第二层。以此类推
节点的深度:从根节点到当前节点的唯一路径上的节点总数,如图22的深度为3
节点的高度:从当前节点到最远叶子节点的路径上的节点总数,如图22的高度为2
树的深度:所有节点深度中的最大值,图中树的深度为4
树的高度:所有节点高度中的最大值,图中树的高度为4

树的高度=树的深度

image.png

有序树:树中任意节点的子节点之间有顺序关系
无序树:树中任意节点的子节点之间没有顺序关系

二叉树

特点:

  1. 每个节点的度最大为2
  2. 左子树和右子树是有顺序的

以下都是二叉树


image.png

二叉树的特性:

  1. 非空二叉树的第 i 层,最多有 2 ^ (i-1) 个节点(i >= 1)
  2. 在高度为 h 的二叉树上最多有 2 ^ h − 1 个结点 (h >= 1)
  3. 对于任何一颗非空二叉树,如果叶子节点个数为n0,度为2的节点个数为n2,则有:n0 = n2 + 1

推导过程:一个非空二叉树的节点总数n = n0 + n1 + n2
每个节点头上都有一条边,除了root节点。所以总边数等于 n - 1,除去root节点
度为0的节点边数为0,度为1边数为节点数,度为2的为2倍的节点数
所以边数和节点的关系:n - 1 = 0 + n1 + 2 * n2

image.png

真二叉树

所有的节点度要不为0 要不为2

image.png

满二叉树

最后一层节点的度都为0,其他节点的度为2

image.png

假设满二叉树的高度为h(h >= 1),那么

  1. 第 i 层的节点数量:2 ^ ( i -1 )
  2. 叶子节点数量: 2 ^ (h-1)
  3. 总节点数量n:
    n = 2^0 + 2^1 + 2^2 + 2^3 + ... + 2^(h-1) = 2^h -1
    h = log2(n+1)

在同样高度的二叉树中,满二叉树的叶子节点数量最多、总节点数量最多
满二叉树一定是真二叉树,但真二叉树不一定是满二叉树。

完全二叉树

对节点从上至下、左至右开始编号,其所有编号都能与相同高度的满二叉树中的编号对应

image.png

  1. 叶子节点只会出现在最后两层, 最后一层的叶子节点都靠左对齐。
  2. 完全二叉树从根节点到倒数第二层是一颗满二叉树
  3. 满二叉树一定是完全二叉树,但是完全二叉树不一定是满二叉树

下图不是完全二叉树


image.png

完全二叉树的性质

  1. 度为1的节点只有左子树
  2. 度为1的节点最多有一个
  3. 同样节点数量的二叉树,完全二叉树的高度最小

假设完全二叉树的高度为h(h >= 1), 那么

  1. 至少有2^(h-1)个节点:2^0 + 2^1 + 2^2 + 2^3 + ... + 2^(h-2) + 1
  2. 最多有2^h - 1个节点: 2^0 + 2^1 + 2^2 + 2^3 + ... + 2^(h-1)
  3. 总节点数量n:
    2^(h-1) <= n < 2^h
    高度:
    h − 1 ≤ log2n < h ===> h = floor( log2n ) + 1

一棵有 n 个节点的完全二叉树(n > 0),从上到下、从左到右对节点从 1 开始进行编号,对任意第 i 个节点

image.png

  1. 如果 i = 1 ,它是根节点
  2. 如果 i > 1 ,它的父节点编号为 floor( i / 2 )
  3. 如果 2i ≤ n ,它的左子节点编号为 2i
  4. 如果 2i > n ,它无左子节点
  5. 如果 2i + 1 ≤ n ,它的右子节点编号为 2i + 1
  6. 如果 2i + 1 > n ,它无右子节点

一棵有 n 个节点的完全二叉树(n > 0),从上到下、从左到右对节点从 0 开始进行编号,对任意第 i 个节点

image.png

  1. 如果 i = 0 ,它是根节点
  2. 如果 i > 1 ,它的父节点编号为 floor( (i -1)/ 2 )
  3. 如果 2i + 1 ≤ n - 1 ,它的左子节点编号为 2i + 1
  4. 如果 2i + 1 > n - 1 ,它无左子节点
  5. 如果 2i + 2 ≤ n - 1 ,它的右子节点编号为 2i + 2
  6. 如果 2i + 2 > n - 1 ,它无右子节点

面试题:
如果一棵完全二叉树有 768 个节点,求叶子节点的个数?

解题:384
假设叶子节点个数为 n0,度为 1 的节点个数为 n1,度为 2 的节点个数为 n2
总结点个数 n = n0 + n1 + n2,而且 n0 = n2 + 1
所以:n = 2n0 + n1 – 1

完全二叉树的 n1 要么为 0,要么为 1
n1为1时,n = 2n0,n 必然是偶数
叶子节点个数 n0 = n / 2,非叶子节点个数 n1 + n2 = n / 2
n1为0时,n = 2n0 – 1,n 必然是奇数
叶子节点个数 n0 = (n + 1) / 2,非叶子节点个数 n1 + n2 = (n – 1) / 2

叶子节点个数 n0 = floor( (n + 1) / 2 )= ceiling( n / 2 )
非叶子节点个数 n1 + n2 = floor( n / 2 ) = ceiling( (n – 1) / 2 )

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容

  • 简单地理解,满足以下两个条件的树就是二叉树: 本身是有序树; 树中包含的各个节点的度不能超过 2,即只能是 0、1...
    飞扬code阅读 1,388评论 0 4
  • 树,是一种在实际编程中经常遇到的数据结构。它的逻辑很简单,除根节点之外,每个节点只有一个父节点,根节点没有父节点。...
    doudo阅读 758评论 0 0
  • 一、基本概念 注意: 一个树只有一个根节点(1)节点的度(degree)一个节点拥有子树数 (2)节点分类根节点(...
    wuzhiguo阅读 1,202评论 0 0
  • 首先,我们来讲讲什么是树: 树是一种非线性的数据结构,相对于线性的数据结构(链表、数组)而言,树的平均运行时间更短...
    C语言Plus阅读 1,232评论 0 0
  • 第十五章武功尽失? 用过晚膳,云舒一手拿着棋谱一手执棋子和自己对弈着,正思索间,听见门外阿香的声音,“少爷!” 温...
    岳椿丽阅读 253评论 0 1