machine learning学习笔记一

朴素贝叶斯分类器 classifier

supervised 

naive bayes 

1.为什么叫朴素贝叶斯,因为它假设被分类的对象的不同属性是独立的( assumption:attribute conditional independent )

2. 过程

第一步:function set.  the classifier based on probability used P(x1|c1) P(x2|c1) P(x1|c2) P(x2|c2) to help convert the problem of solving P(c1|x1). 把X分解成许多个点(我们的样本空间), 通过将大事件分为界为许多个小事件,求小事件的概率,相加求得X的概率。求解小事件的概率是我们假设小事件发生在不同的class中的概率服从高斯分布(正态分布),概率问题转化为求分布的参数问题。不同的参数对应不同的function,从而组成function set。

第二步,评判goodness of function。在regression中,评判function的优劣用损失函数最小化来做。用的是拟合值和实际值之差的平方的求和。在概率问题中,损失函数的形式为P(y≠ci),即判断错了的概率。通过数学推导,最小化损失函数的期望=最大化概率=最大似然。即找到最优的分布可以使改分布能够最大likelyhood sample出我们样本中的点。问题转化为条件概率的极大似然参数估计。两个参数即是高斯分布的(μ,covariance)。

第三步,找到最优function后,就进行classify. P>0.5即class1,<0.5即class2。然后用test data计算accuracy。一般来说,数据的维度越高,可能分类得更准确。

3.一些补充:“如何求类条件概率密度: 

我们知道贝叶斯决策中关键便在于知道后验概率,那么问题便集中在求解类条件概率密度!那么如何求呢?答案便是:将类条件概率密度进行参数化。

最大似然估计和贝叶斯估计参数估计: 

鉴于类条件概率密度难求,我们将其进行参数化,这样我们便只需要对参数进行求解就行了,问题难度将大大降低!比如:我们假设类条件概率密度p(x|w)是一个多元正态分布,那么我们就可以把问题从估计完全未知的概率密度p(x|w)转化成估计参数:均值u、协方差ε

所以最大似然估计和贝叶斯估计都属于参数化估计!”

4.为什么分类问题不用回归问题解决?:

如果遇到新分类,regression无法识别这些和原有class异常的值,会拉低分类的准确度。

对于catogory,如果不同的catogory之间没有顺序关系,难以用于回归。

5.朴素贝叶斯与逻辑特回归的区别与联系

logit是对linear regression的一种函数变换。

https://blog.csdn.net/chlele0105/article/details/38922551这篇文章对nb和lr的区别讲的很好。

(1)假设不同:logit的假设中不要求 attribute是条件独立的,而nb要求。

(2) nb比较严格也比较理想化,适用于数据集小一些的数据,因为需要从训练数据集中先计算先验概率,才能算到后验概率。但是rl是不需要先验概率的,是对整个参数空间进行线性搜索的,需要的数据集更大。

(3) lr是判别模型(0,1),nb是生成模型。

6.朴素贝叶斯的应用:

文本分类,垃圾邮件过滤。




©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容