pytorch学习笔记-weight decay 和 learning rate decay

1. Weight decay

Weight decay 是一种正则化方法,大概意思就是在做梯度下降之前,当前模型的 weight 做一定程度的 decay。
weights_{t+1} = (1-weight\_decay)*weight_t - lr * gradient
上面这个就相当于是 weights 减去下面公式对权重的梯度:
\frac{weight\_decay}{2*lr}weight^2 + loss
整理一下就是L2正则化:
loss = loss +\frac{ weight\_decay'}{2} * L_2 (weights)

所以当 weight\_decay' =\frac{weight\_decay}{lr} 的时候,L2正则化和 weight decay 是一样的,因此也会有人说L2正则就是权重衰减。在SGD中的确是这样,但是在 Adam中就不一定了。

使用 weight decay 可以:

  • 防止过拟合
  • 保持权重在一个较小在的值,避免梯度爆炸。因为在原本的 loss 函数上加上了权重值的 L2 范数,在每次迭代时,模不仅会去优化/最小化 loss,还会使模型权重最小化。让权重值保持尽可能小,有利于控制权重值的变化幅度(如果梯度很大,说明模型本身在变化很大,去过拟合样本),从而避免梯度爆炸。

在 pytorch 里可以设置 weight decay。torch.optim.Optimizer 里, SGD、ASGD 、Adam、RMSprop 等都有weight_decay参数设置:

optimizer = torch.optim.SGD(model.parameters(), lr=lr, weight_decay=1e-4)

参考:
Deep learning basic-weight decay
关于量化训练的一个小tip: weight-decay

2. Learning rate decay

知道梯度下降的,应该都知道学习率的影响,过大过小都会影响到学习的效果。Learning rate decay 的目的是在训练过程中逐渐降低学习率,pytorch 在torch.optim.lr_scheduler 里提供了很多花样。

Scheduler 的定义在 optimizer之后, 而参数更新应该在一个 epoch 结束之后。

optimizer = torch.optim.SGD(model.parameters(), lr=lr, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='min', verbose=True)

for epoch in range(10):
   for input,label in dataloader:
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        optimizer.step()
    scheduler.step()

权重衰减(weight decay)与学习率衰减(learning rate decay)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容