(一)Error in .ArchiveBatchadd evals(self=selfprivate =private,super =super.Assertion on 'ydt[, self$cols _y, with = FALSE]' failed: contains missing values (column 'classif.auc,row 1).
classif.auc中有缺失值这个报错的解决方法是:
measure <- msr("classif.auc",na_value = 0) # 模型训练评价指标</code>
(二)Error in nnet.default(x, y, w, ...) : too many (1009) weights
神经网络建模中出现这个报错的解决方法是:
MaxNWts = 2000
MaxNWts参数的默认值为1000,设置比报错大的数即可,注意参数中的首字母大写。
(三)1: In svm.default(x = data, y = taskpredict_type == ... : Variable(s) ‘OS_five’ constant. Cannot scale data.
SVM学习中出现这个警告的解决方法是:
scale = FALSE
指定scale参数为FALSE即可。