runloop详解

深入理解RunLoop

在介绍runLoop之前有这样几个关键字需要理解:

  • source0:不是基于端口的输入源
  • source1:用来接收系统事件,当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由IOKit.framework生成一个IOHIDEvent事件并由 SpringBoard接收,可参考官方文档。SpringBoard只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种 Event,随后用mach port转发给需要的App进程。随后苹果注册的那个source1就会触发回调,并调用_UIApplicationHandleEventQueue()进行应用内部的分发。
    _UIApplicationHandleEventQueue()会把IOHIDEvent处理并包装成 UIEvent进行处理或分发,其中包括识别 UIGesture/处理屏幕旋转/发送给 UIWindow 等。通常事件比如 UIButton 点击、touchesBegin/Move/End/Cancel 事件都是在这个回调中完成的。
  • mach port:机械接口,iOS内核的一种通信机制
  • timer:定时器
  • run loop mode:包含 input sources 和 被监视的 timers 和 将要被通知的 run-loop 的observer 所组成的集合。在执行该运行循环的期间,只有与指定运行的 mode 相关联的 source 才会被检测和允许去发送他们的事件。
  • observer:runLoop的观察者
  • input source:异步传递事件到你的线程中。event 的source 取决于 input source 的类型,通常是两个类型中的一个(基于port的和自定义的)。
  • mac_msg():RunLoop 的核心就是一个 mach_msg() (见上面代码的第7步),RunLoop 调用这个函数去接收消息,如果没有别人发送 port 消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个 iOS 的 App,然后在 App 静止时点击暂停,你会看到主线程调用栈是停留在 mach_msg_trap() 这个地方。

官方文档:http://iphonedevwiki.net/index.php/IOHIDFamily

runLoop:消息机制的处理模式,消息循环(事件循环)

作用:在有事件的时候当前的NSRunLoop的线程处理事件,没有事件的时候线程进行休眠

NSRunLoop就是一直在循环检测,从线程start到线程end,检测input source(如点击,双击等操作)同步事件,检测time source同步事件,检测到输入源会执行处理函数,首先会产生通知,corefunction向线程添加runloop observers来监听事件,意在监听事件发生时来做处理。
在单线程的App中,不需要注意Run Loop,但不代表没有。程序启动时,系统已经在主线程中加入Run Loop。它保证了我们的主线程在运行起来后,就处于一种“等待”的状态(而不像一些命令行程序在运行一次就结束了),这个时候如果有接收到的时间(Timer的定时到了或是其他线程的消息),就会执行任务,否则就处于休眠状态。
runloopmode是一个集合,包括监听:事件源,定时器,以及需通知的runloop observers
模式包括:

  • default模式:几乎包括所有输入源(除NSConnection)NSDefaultRunLoopMode模式
  • mode模式:处理modal panels
  • connection模式:处理NSConnection事件,属于系统内部,用户基本不用
  • event tracking模式:如组件拖动输入源 UITrackingRunLoopModes不处理定时事件
  • common modes模式:NSRunLoopCommonModes这是一组可配置的通用模式。将input source与该模式关联则同时也将input source与改组中的其它模式进行了关联

每次运行一个run loop,你指定(显式或隐式)run loop的运行模式。当相应的模式传递给run loop时,只有与该模式对应的input sources才被监控并允许run loop对事件进行处理(与此类似,也只有与该模式对应的observers才会被通知)

例:

1.在timer与table同时执行情况,当拖动table时,runloop进入UITrackingRunLoopModes模式下,不会处理定时事件,此时timer不能处理,所以此时将timer加入到NSRunLoopCommondModes模式(addTimer forMode)

2.在scroll一个页面时来松开,此时connection不会收到消息,由于scroll时runloop为UITrackingRunLoopModes模式,不接收输入源,此时要修改connection的mode

[scheduleInRunLoop:[NSRunLoop currentRunLoop] forMode:NSRunLoopCommonModes];

关于-(BOOL)runMode:(NSString *)mode beforeDate:(NSDate)date;方法
指定

为什么要用runLoop:

  • 使程序一直运行接受用户输入
  • 决定程序在何时应该处理哪些Event
  • 调用解耦(对于编程经验为0的完全没搞懂这个意思,解释为Message Queue)
  • 节省CPU时间

苹果用 RunLoop 实现的功能

  • AutoreleasePool
  • 事件响应
  • 手势识别
  • 界面更新
  • 定时器
  • PerformSelecter
  • 关于GCD
  • 关于网络请求

CFRunLoopRef是基于pthread来管理的

RunLoop的底层实现

苹果官方将整个系统大致划分为上述4个层次:


1432799001829463.png

1.应用层包括用户能接触到的图形应用,例如 Spotlight、Aqua、SpringBoard 等。
2.应用框架层即开发人员接触到的 Cocoa 等框架。
3.核心框架层包括各种核心框架、OpenGL 等内容。
4.Darwin 即操作系统的核心,包括系统内核、驱动、Shell 等内容,这一层是开源的,其所有源码都可以在 opensource.apple.com 里找到。

AutoreleasePool

App启动后,苹果在主线程 RunLoop 里注册了两个 Observer,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()。

第一个 Observer 监视的事件是 Entry(即将进入Loop),其回调内会调用 _objc_autoreleasePoolPush() 创建自动释放池。其 order 是-2147483647,优先级最高,保证创建释放池发生在其他所有回调之前。

第二个 Observer 监视了两个事件: BeforeWaiting(准备进入休眠) 时调用_objc_autoreleasePoolPop() 和 _objc_autoreleasePoolPush() 释放旧的池并创建新池;Exit(即将退出Loop) 时调用 _objc_autoreleasePoolPop() 来释放自动释放池。这个 Observer 的 order 是 2147483647,优先级最低,保证其释放池子发生在其他所有回调之后。

在主线程执行的代码,通常是写在诸如事件回调、Timer回调内的。这些回调会被 RunLoop 创建好的 AutoreleasePool 环绕着,所以不会出现内存泄漏,开发者也不必显示创建 Pool 了。

事件响应

苹果注册了一个 Source1 (基于 mach port 的) 用来接收系统事件,其回调函数为 __IOHIDEventSystemClientQueueCallback()。

当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由 IOKit.framework 生成一个 IOHIDEvent 事件并由 SpringBoard 接收。这个过程的详细情况可以参考这里。SpringBoard 只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种 Event,随后用 mach port 转发给需要的App进程。随后苹果注册的那个 Source1 就会触发回调,并调用 _UIApplicationHandleEventQueue() 进行应用内部的分发。

_UIApplicationHandleEventQueue() 会把 IOHIDEvent 处理并包装成 UIEvent 进行处理或分发,其中包括识别 UIGesture/处理屏幕旋转/发送给 UIWindow 等。通常事件比如 UIButton 点击、touchesBegin/Move/End/Cancel 事件都是在这个回调中完成的。

手势识别

当上面的 _UIApplicationHandleEventQueue() 识别了一个手势时,其首先会调用 Cancel 将当前的 touchesBegin/Move/End 系列回调打断。随后系统将对应的 UIGestureRecognizer 标记为待处理。

苹果注册了一个 Observer 监测 BeforeWaiting (Loop即将进入休眠) 事件,这个Observer的回调函数是 _UIGestureRecognizerUpdateObserver(),其内部会获取所有刚被标记为待处理的 GestureRecognizer,并执行GestureRecognizer的回调。

当有 UIGestureRecognizer 的变化(创建/销毁/状态改变)时,这个回调都会进行相应处理。

界面更新

当在操作 UI 时,比如改变了 Frame、更新了 UIView/CALayer 的层次时,或者手动调用了 UIView/CALayer 的 setNeedsLayout/setNeedsDisplay方法后,这个 UIView/CALayer 就被标记为待处理,并被提交到一个全局的容器去。

苹果注册了一个 Observer 监听 BeforeWaiting(即将进入休眠) 和 Exit (即将退出Loop) 事件,回调去执行一个很长的函数:

_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()。这个函数里会遍历所有待处理的 UIView/CAlayer 以执行实际的绘制和调整,并更新 UI 界面。

这个函数内部的调用栈大概是这样的:
_ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()
QuartzCore:CA::Transaction::observer_callback:
CA::Transaction::commit();
CA::Context::commit_transaction();
CA::Layer::layout_and_display_if_needed();
CA::Layer::layout_if_needed();
[CALayer layoutSublayers];
[UIView layoutSubviews];
CA::Layer::display_if_needed();
[CALayer display];
[UIView drawRect];

定时器

NSTimer 其实就是 CFRunLoopTimerRef,他们之间是 toll-free bridged 的。一个 NSTimer 注册到 RunLoop 后,RunLoop 会为其重复的时间点注册好事件。例如 10:00, 10:10, 10:20 这几个时间点。RunLoop为了节省资源,并不会在非常准确的时间点回调这个Timer。Timer 有个属性叫做 Tolerance (宽容度),标示了当时间点到后,容许有多少最大误差。

如果某个时间点被错过了,例如执行了一个很长的任务,则那个时间点的回调也会跳过去,不会延后执行。就比如等公交,如果 10:10 时我忙着玩手机错过了那个点的公交,那我只能等 10:20 这一趟了。

CADisplayLink 是一个和屏幕刷新率一致的定时器(但实际实现原理更复杂,和 NSTimer 并不一样,其内部实际是操作了一个 Source)。如果在两次屏幕刷新之间执行了一个长任务,那其中就会有一帧被跳过去(和 NSTimer 相似),造成界面卡顿的感觉。在快速滑动TableView时,即使一帧的卡顿也会让用户有所察觉。Facebook 开源的 AsyncDisplayLink 就是为了解决界面卡顿的问题,其内部也用到了 RunLoop,这个稍后我会再单独写一页博客来分析。

PerformSelecter

当调用 NSObject 的 performSelecter:afterDelay: 后,实际上其内部会创建一个 Timer 并添加到当前线程的 RunLoop 中。所以如果当前线程没有 RunLoop,则这个方法会失效。

当调用 performSelector:onThread: 时,实际上其会创建一个 Timer 加到对应的线程去,同样的,如果对应线程没有 RunLoop 该方法也会失效。

关于GCD

实际上 RunLoop 底层也会用到 GCD 的东西,比如 RunLoop 是用 dispatch_source_t 实现的 Timer。但同时 GCD 提供的某些接口也用到了 RunLoop, 例如 dispatch_async()。

当调用 dispatch_async(dispatch_get_main_queue(), block) 时,libDispatch 会向主线程的 RunLoop 发送消息,RunLoop会被唤醒,并从消息中取得这个 block,并在回调 CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE() 里执行这个 block。但这个逻辑仅限于 dispatch 到主线程,dispatch 到其他线程仍然是由 libDispatch 处理的。

关于网络请求

iOS 中,关于网络请求的接口自下至上有如下几层:
CFSocket
CFNetwork ->ASIHttpRequest
NSURLConnection ->AFNetworking
NSURLSession ->AFNetworking2, Alamofire

•CFSocket 是最底层的接口,只负责 socket 通信。

•CFNetwork 是基于 CFSocket 等接口的上层封装,ASIHttpRequest 工作于这一层。

•NSURLConnection 是基于 CFNetwork 的更高层的封装,提供面向对象的接口,AFNetworking 工作于这一层。

•NSURLSession 是 iOS7 中新增的接口,表面上是和 NSURLConnection 并列的,但底层仍然用到了 NSURLConnection 的部分功能 (比如 com.apple.NSURLConnectionLoader 线程),AFNetworking2 和 Alamofire 工作于这一层。

下面主要介绍下 NSURLConnection 的工作过程。

通常使用 NSURLConnection 时,你会传入一个 Delegate,当调用了 [connection start] 后,这个 Delegate 就会不停收到事件回调。实际上,start 这个函数的内部会会获取 CurrentRunLoop,然后在其中的 DefaultMode 添加了4个 Source0 (即需要手动触发的Source)。CFMultiplexerSource 是负责各种 Delegate 回调的,CFHTTPCookieStorage 是处理各种 Cookie 的。

当开始网络传输时,我们可以看到 NSURLConnection 创建了两个新线程:com.apple.NSURLConnectionLoader 和 com.apple.CFSocket.private。其中 CFSocket 线程是处理底层 socket 连接的。NSURLConnectionLoader 这个线程内部会使用 RunLoop 来接收底层 socket 的事件,并通过之前添加的 Source0 通知到上层的 Delegate。

1432799200369980.png

NSURLConnectionLoader 中的 RunLoop 通过一些基于 mach port 的 Source 接收来自底层 CFSocket 的通知。当收到通知后,其会在合适的时机向 CFMultiplexerSource 等 Source0 发送通知,同时唤醒 Delegate 线程的 RunLoop 来让其处理这些通知。CFMultiplexerSource 会在 Delegate 线程的 RunLoop 对 Delegate 执行实际的回调。

RunLoop 的实际应用举例

AFNetworking

AFURLConnectionOperation 这个类是基于 NSURLConnection 构建的,其希望能在后台线程接收 Delegate 回调。为此 AFNetworking 单独创建了一个线程,并在这个线程中启动了一个 RunLoop:

  • (void)networkRequestThreadEntryPoint:(id)__unused object {
    @autoreleasepool {
    [[NSThread currentThread] setName:@"AFNetworking"];
    NSRunLoop *runLoop = [NSRunLoop currentRunLoop];
    [runLoop addPort:[NSMachPort port] forMode:NSDefaultRunLoopMode];
    [runLoop run];
    }
    }

  • (NSThread *)networkRequestThread {
    static NSThread *_networkRequestThread = nil;
    static dispatch_once_t oncePredicate;
    dispatch_once(&oncePredicate, ^{
    _networkRequestThread = [[NSThread alloc] initWithTarget:self selector:@selector(networkRequestThreadEntryPoint:) object:nil];
    [_networkRequestThread start];
    });
    return _networkRequestThread;
    }

RunLoop 启动前内部必须要有至少一个 Timer/Observer/Source,所以 AFNetworking 在 [runLoop run] 之前先创建了一个新的 NSMachPort 添加进去了。通常情况下,调用者需要持有这个 NSMachPort (mach_port) 并在外部线程通过这个 port 发送消息到 loop 内;但此处添加 port 只是为了让 RunLoop 不至于退出,并没有用于实际的发送消息。

  • (void)start {
    [self.lock lock];
    if ([self isCancelled]) {
    [self performSelector:@selector(cancelConnection) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
    } else if ([self isReady]) {
    self.state = AFOperationExecutingState;
    [self performSelector:@selector(operationDidStart) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
    }
    [self.lock unlock];
    }

当需要这个后台线程执行任务时,AFNetworking 通过调用 [NSObject performSelector:onThread:..] 将这个任务扔到了后台线程的 RunLoop 中。

AsyncDisplayKit

AsyncDisplayKit 是 Facebook 推出的用于保持界面流畅性的框架,其原理大致如下:

UI 线程中一旦出现繁重的任务就会导致界面卡顿,这类任务通常分为3类:排版,绘制,UI对象操作。

排版通常包括计算视图大小、计算文本高度、重新计算子式图的排版等操作。

绘制一般有文本绘制 (例如 CoreText)、图片绘制 (例如预先解压)、元素绘制 (Quartz)等操作。

UI对象操作通常包括 UIView/CALayer 等 UI 对象的创建、设置属性和销毁。

其中前两类操作可以通过各种方法扔到后台线程执行,而最后一类操作只能在主线程完成,并且有时后面的操作需要依赖前面操作的结果 (例如TextView创建时可能需要提前计算出文本的大小)。ASDK 所做的,就是尽量将能放入后台的任务放入后台,不能的则尽量推迟 (例如视图的创建、属性的调整)。

为此,ASDK 创建了一个名为 ASDisplayNode 的对象,并在内部封装了 UIView/CALayer,它具有和 UIView/CALayer 相似的属性,例如 frame、backgroundColor等。所有这些属性都可以在后台线程更改,开发者可以只通过 Node 来操作其内部的 UIView/CALayer,这样就可以将排版和绘制放入了后台线程。但是无论怎么操作,这些属性总需要在某个时刻同步到主线程的 UIView/CALayer 去。

ASDK 仿照 QuartzCore/UIKit 框架的模式,实现了一套类似的界面更新的机制:即在主线程的 RunLoop 中添加一个 Observer,监听了 kCFRunLoopBeforeWaiting 和 kCFRunLoopExit 事件,在收到回调时,遍历所有之前放入队列的待处理的任务,然后一一执行。

需要runloop的时候

当你在子线程中有一下场景的时候需要开启你的run loop
你需要在以下这些场景中开启你的 run loop:

  • 使用 port 或者自定义 input source 来和其他线程进行通信。
  • 在线程中使用 timer 。
  • 在 Cocoa 的应用中使用任何与 performSelector…相关的方法。
  • 让你的线程继续执行周期性的任务。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容