手写数字识别Python+TensorFlow+CNN卷积神经网络【完整代码系统】

一、介绍

手写数字识别系统,使用Python语言,基于TensorFlow搭建CNN卷积神经网络算法对数据集进行训练,最后得到模型,并基于FLask搭建网页端界面,基于Pyqt5搭建桌面端可视化界面。

二、效果展示

img_06_20_13_35_27
img_06_20_13_35_41
img_06_20_13_36_12

三、演示视频+完整代码

视频+代码:https://www.yuque.com/ziwu/yygu3z/tb1mzqi847daqkru

四、手写数字识别

当涉及手写数字识别系统时,TensorFlow是一个强大的工具,它提供了许多用于构建深度学习模型的功能。以下是一个基本的代码示例,展示了如何使用TensorFlow来构建、训练和测试手写数字识别系统。

首先,我们需要导入所需的库和模块:

pythonCopy codeimport tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

接下来,我们可以加载并预处理手写数字数据集(例如MNIST数据集):

pythonCopy code# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

# 将像素值缩放到0到1之间
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0

# 将标签转换为独热编码(one-hot encoding)
y_train = keras.utils.to_categorical(y_train)
y_test = keras.utils.to_categorical(y_test)

接下来,我们可以定义一个基本的卷积神经网络(CNN)模型来进行手写数字识别:

pythonCopy codemodel = keras.Sequential([
    layers.Reshape(target_shape=(28, 28, 1), input_shape=(28, 28)),
    layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu'),
    layers.MaxPooling2D(pool_size=(2, 2)),
    layers.Flatten(),
    layers.Dense(units=128, activation='relu'),
    layers.Dense(units=10, activation='softmax')
])

现在,我们可以编译模型并开始训练:

pythonCopy codemodel.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=128, epochs=5, validation_data=(x_test, y_test))

在训练过程中,我们使用Adam优化器和交叉熵损失函数。我们还指定了每个批次的大小(128)和训练周期的数量(5)。通过使用验证集(x_test和y_test)进行验证,我们可以评估模型的性能。

训练完成后,我们可以使用测试集来评估模型的准确性:

pythonCopy codetest_loss, test_acc = model.evaluate(x_test, y_test)
print("Test accuracy:", test_acc)

以上代码提供了一个基本的手写数字识别系统的构建、训练和测试流程。你可以根据需要对模型进行调整和优化,例如增加网络的深度、调整超参数等,以提高准确性。

五、CNN卷积神经网络

卷积神经网络(Convolutional Neural Network,CNN)是一种用于处理具有网格结构数据的深度学习模型。它在计算机视觉任务中取得了显著的成功,特别是在图像分类、目标检测和图像分割等领域。

CNN的核心思想是通过卷积层、池化层和全连接层等组件来提取和学习图像特征,从而实现高效的图像识别和处理。下面是CNN的一些重要组件和特性:

  1. 卷积层(Convolutional layers):卷积层是CNN的核心组件,它通过应用一系列的滤波器(也称为卷积核)对输入数据进行卷积操作,从而提取图像中的局部特征。卷积操作通过滑动滤波器窗口在输入数据上进行元素级乘法和求和运算。卷积层可以学习到不同的滤波器,从而捕捉到图像的不同特征,如边缘、纹理和形状等。
  2. 池化层(Pooling layers):池化层用于减小特征图的空间尺寸,并减少模型中的参数数量。常用的池化操作包括最大池化和平均池化,它们通过在局部区域内选择最大或平均值来减小特征图的尺寸。池化层有助于增强模型的平移不变性,并提取出更加鲁棒的特征。
  3. 激活函数(Activation functions):在卷积层和全连接层之间,激活函数被应用于每个神经元的输出,引入非线性性质。常用的激活函数包括ReLU(Rectified Linear Unit)、sigmoid和tanh等。ReLU是最常用的激活函数,它在正区间上直接输出输入值,并在负区间上输出零,具有较好的收敛性和计算效率。
  4. 全连接层(Fully connected layers):在CNN的最后几层,可以使用全连接层来进行分类和预测。全连接层将前一层的所有神经元与当前层的每个神经元相连,通过学习权重来建立输入和输出之间的关系。全连接层通常用于将提取的特征映射转换为最终的预测结果。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容