140. Word Break II

Description

Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, add spaces in s to construct a sentence where each word is a valid dictionary word. You may assume the dictionary does not contain duplicate words.

Return all such possible sentences.

For example, given
s = "catsanddog",
dict = ["cat", "cats", "and", "sand", "dog"].

A solution is ["cats and dog", "cat sand dog"].

UPDATE (2017/1/4):
The wordDict parameter had been changed to a list of strings (instead of a set of strings). Please reload the code definition to get the latest changes.

Solution

Recursion with memo, time O(n ^ 3), space O(n ^ 3)

public class Solution {
    private Map<Integer, List<String>> cache = new HashMap<>();
    
    public List<String> wordBreak(String s, List<String> wordDict) {
        return wordBreak(s, new HashSet<>(wordDict));
    }
    
    public List<String> wordBreak(String s, Set<String> wordDict) {
        return wordBreak(s, wordDict, 0);
    }
    
    public List<String> wordBreak(String s, Set<String> wordDict, int start) {
        if (cache.containsKey(start)) {
            return cache.get(start);
        }
        
        List<String> res = new LinkedList<>();
        if (start == s.length()) {
            res.add("");
        }
       
        for (int end = start + 1; end <= s.length(); end++) {
            if (wordDict.contains(s.substring(start, end))) {
                List<String> list = wordBreak(s, wordDict, end);
                for (String l : list) {
                    res.add(s.substring(start, end) + (l.equals("") ? "" : " ") + l);
                }
            }
        }
        
        cache.put(start, res);
        return res;
    }
}

DP, time O(n ^ 3, space O(n ^ 3) (TLE)

Recursion with memo能AC,但是DP会TLE也是醉醉的...考虑下面这个test case:

"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
["a","aa","aaa","aaaa","aaaaa","aaaaaa","aaaaaaa","aaaaaaaa","aaaaaaaaa","aaaaaaaaaa"]

Now I find answers to my own question. The bottom up DP solution is good solution only when we know where to start and which branches are valuable to global result. For this problem, an memorization search would be a good answer as we would only spend time on where in need. In detail, The reason that DP method Time Limit Exceeded is that the method computed too much time in invalid branches. There are many intermediate lists which will not construct final result. At the time of computing these lists, we did not know whether it will be included in final result, as a result, my suggestion is that, if we really want to solve this problem using DP, instead of spending O(k) time, where k is the length of the intermediate list, we could have just spend o(1) time by only storing the previous one degree indexes based on which we could rebuild the result string list, instead of computing the result string list. This is quite similar to the problem Word Ladder II.

class Solution {
    public List<String> wordBreak(String s, List<String> wordDict) {
        Set<String> dict = new HashSet<>(wordDict);
        List<String>[] dp = new LinkedList[s.length() + 1];
        List<String> initial = new LinkedList<>();
        initial.add("");
        dp[0] = initial;
        
        for (int i = 1; i <= s.length(); ++i) {
            dp[i] = new LinkedList<>();
            
            for (int j = i - 1; j >= 0; --j) {
                String word = s.substring(j, i);
                
                if (!wordDict.contains(word)) {
                    continue;
                }
                
                for (String sentence : dp[j]) {
                    sentence += (sentence.isEmpty() ? "" : " ") + word;
                    dp[i].add(sentence);
                }
            }
        }
        
        return dp[s.length()];
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,332评论 0 10
  • The Inner Game of Tennis W Timothy Gallwey Jonathan Cape ...
    网事_79a3阅读 12,073评论 3 20
  • 似水年华,惊回首、韶光怎留。 风流处、浔阳江头,岸芷悠悠。 从来不解罗衣苦,至此始知难登楼。 月尽夜、惨淡星河泪,...
    三石三味阅读 357评论 2 21
  • 所有不好的心情都会过去。就像此刻,我没有任何对昨天的痛恨。 不想说励志的话。生活的复杂与简单,快乐与忧郁,都是随机...
    安小年axn阅读 166评论 0 0
  • 今天去欢乐谷玩,但刚好亲戚来了,身体有点虚弱,但我还是想玩过山车,那就玩呗,其他的玩过了再说吧。 在玩的过程中我的...
    也许大概可能吧阅读 345评论 0 1