回归任务中的评价指标之MSE,RMSE,MAE,R-Squared,MAPE

转自博客。仅供自己学习使用,如有侵权,请联系删除

分类任务的评价指标有准确率,P值,R值,F1值,而回归任务的评价指标就是MSERMSEMAER-Squared

MSE

均方误差MSE是真实值与预测值的差值的平方和然后求平均。通过平方的形式便于求导,所以常被用作线性回归的损失函数。

MSE=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-\hat{y}_{i}\right)^{2}

RMSE

均方根误差RMSE,即均方误差开平方,常用来作为机器学习模型预测结果衡量的标准。

RMSE=\sqrt{\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-\hat{y}_{i}\right)^{2}}

MAE

MAE是绝对误差的平均值。可以更好地反映预测值误差的实际情况。

MAE=\frac{1}{m} \sum_{i=1}^{m}\left|y_{i}-\hat{y}_{i}\right|

R-Squared

R-Squared又叫可决系数(coefficient of determination),也叫拟合优度,反映的是自变量x对因变量y的变动的解释的程度。越接近于1,说明模型拟合得越好。在sklearn中回归树就是用的该评价指标。

可以这么理解:将TSS理解为全部按平均值预测,RSS理解为按模型预测,这就相当于去比较你模型预测和全部按平均值预测的比例,这个比例越小,则模型越精确。当然该指标存在负数的情况,即模型预测还不如全部按平均值预测

缺点:当数据分布方差比较大时,预测不准时,R^2依然比较大,此时该评价指标就不太好

R^{2}(y, \hat{y})=1-\frac{\sum_{i=0}^{m}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i=0}^{m}\left(y_{i}-\bar{y}\right)^{2}}=\frac{ESS}{TSS}=1-\frac{RSS}{TSS}

其中:

TSS(Total Sum of Squares)=\sum_{i=0}^{m}\left(y_{i}-\bar{y}\right)^{2}

表述真实值y的变动程度,正比于方差

RSS(Residual Sum of Squares)=\sum_{i=0}^{m}\left(y_{i}-\hat{y}_{i}\right)^{2}

表示模型预测\hat{y}和真实值y之间的残差

ESS(Explained Sum of Squares)=\sum_{i=0}^{m}\left(\hat{y}_{i}-\bar{y}\right)^{2}

使用sklearn计算:

from sklearn.metrics import r2_score
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
r2_score(y_true, y_pred)
0.948...

MAPE

MAE=\frac{1}{m} \sum_{i=1}^{m}\left|\hat{y}_{i}-y_{i}\right|

MAPE=\frac{100 \%}{m} \sum_{i=1}^{m}\left|\frac{\hat{y}_{i}-y_{i}}{y_{i}}\right|

MAE:
范围 [0,+\infty), 当预测值与真实值完全吻合时等于0, 即完美模型; 误差越大, 该值越大。

MAPE:
范围[0,+\infty), MAPE 为0%表示完美模型, MAPE大于100%则表示劣质模型。MAPE的值越小,说明预测模型拥有更好的精确度.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容