TimeScaleDB 简单摘要

时序数据库分析 - TimescaleDB时序数据库介绍

A hypertable can be partitioned by additional columns as well -- such as a device identifier, server or container id, user or customer id, location, stock ticker symbol, and so forth. Such partitioning on this additional column typically employs hashing (mapping all devices or servers into a specific number of hash buckets), although interval-based partitioning can be employed here as well. We sometimes refer to hypertables partitioned by both time and this additional dimension as "time and space" partitions.

This time-and-space partitioning is primarily used for distributed hypertables. With such two-dimensional partitioning, each time interval will also be partitioned across multiple nodes comprising the distributed hypertables. In such cases, for the same hour, information about some portion of the devices will be stored on each node. This allows multi-node TimescaleDB to parallelize inserts and queries for data during that time interval.

Each chunk is implemented using a standard database table. (In PostgreSQL internals, the chunk is actually a "child table" of the "parent" hypertable.) A chunk includes constraints that specify and enforce its partitioning ranges, e.g., that the time interval of the chunk covers ['2020-07-01 00:00:00+00', '2020-07-02 00:00:00+00'), and all rows included in the chunk must have a time value within that range. Any space partitions will be reflected as chunk constraints as well. As these ranges and partitions are non-overlapping, all chunks in a hypertable are disjoint in their partitioning dimensional space.

Local indexes. Indexes are built on each chunk independently, rather than a global index across all data. This similarly ensures that both data and indexes from the latest chunks typically reside in memory, so that updating indexes when inserting data remains fast. And TimescaleDB can still ensure global uniqueness on keys that include any partitioning keys, given the disjoint nature of its chunks, i.e., given a unique (device_id, timestamp) primary key, first identify the corresponding chunk given constraints, then use one of that chunk's index to ensure uniqueness. But this remains simple to use with TimecaleDB's hypertable abstraction: Users simply create an index on the hypertable, and these operations (and configurations) are pushed down to both existing and new chunks.

Distributed hypertables

TimescaleDB supports distributing hypertables across multiple nodes (i.e., a cluster) by leveraging the same hypertable and chunk primitives as described above. This allows TimescaleDB to scale inserts and queries beyond the capabilities of a single TimescaleDB instance.

Distributed hypertables and regular hypertables look very similar, with the main difference being that distributed chunks are not stored locally. There are also some features of regular hypertables that distributed hypertables do not support (see section on current limitations).

Scaling distributed hypertables

As time-series data grows, a common use case is to add data nodes to expand the storage and compute capacity of distributed hypertables. Thus, TimescaleDB can be elastically scaled out by simply adding data nodes to a distributed database.

As mentioned earlier, TimescaleDB can (and will) adjust the number of space partitions as new data nodes are added. Although existing chunks will not have their space partitions updated, the new settings will be applied to newly created chunks. Because of this behavior, we do not need to move data between data nodes when the cluster size is increased, and simply update how data is distributed for the next time interval. Writes for new incoming data will leverage the new partitioning settings, while the access node can still support queries across all chunks (even those that were created using the old partitioning settings). Do note that although the number of space partitions can be changed, the column on which the data is partitioned can not be changed.

Data Retention

An intrinsic part of time-series data is that new data is accumulated and old data is rarely, if ever, updated and the relevance of the data diminishes over time. It is therefore often desirable to delete old data to save disk space.

Hypertable limitations

Foreign key constraints referencing a hypertable are not supported.
Time dimensions (columns) used for partitioning cannot have NULL values.
Unique indexes must include all columns that are partitioning dimensions.
UPDATE statements that move values between partitions (chunks) are not supported. This includes upserts (INSERT ... ON CONFLICT UPDATE).

Create your first hypertable

Creating a hypertable is a two step process. First we execute a CREATE TABLE statement to create a regular relational table. Second, we execute a SELECT statement using the function create_hypertable and specifying the name of the table we want to turn into a hypertable, as well as the name of the time column in that table, which is a required parameter.

How hypertables help with times series data

Hypertables help speed up ingest rates, since data is only inserted into the current chunk, leaving data in the other chunks untouched. Contrast this with inserting data into a single table, which will become bigger and more bloated as more data is ingested.

Hypertables help speed up queries, since only specific chunks are queried thanks to the automatic indexing by time and/or space.

Accessing the dataset

-- copy data from weather_data.csv into weather_metrics
\copy weather_metrics (time, timezone_shift, city_name, temp_c, feels_like_c, temp_min_c, temp_max_c, pressure_hpa, humidity_percent, wind_speed_ms, wind_deg, rain_1h_mm, rain_3h_mm, snow_1h_mm, snow_3h_mm, clouds_percent, weather_type_id) from './weather_data.csv' CSV HEADER;

create_hypertable()

SELECT create_hypertable('conditions', 'time', 'location', 4);


SELECT create_hypertable('conditions', 'time', 'location', 4, partitioning_func => 'location_hash');

Reading data

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容