[GAN笔记] pix2pix

论文链接: https://arxiv.org/abs/1611.07004

1. 介绍
  图像处理的很多问题都是将一张输入的图片转变为一张对应的输出图片,比如灰度图、梯度图、彩色图之间的转换等。通常每一种问题都使用特定的算法(如:使用CNN来解决图像转换问题时,要根据每个问题设定一个特定的loss function 来让CNN去优化,而一般的方法都是训练CNN去缩小输入跟输出的欧氏距离,但这样通常会得到比较模糊的输出)。这些方法的本质其实都是从像素到像素的映射。于是论文在GAN的基础上提出一个通用的方法:pix2pix 来解决这一类问题。通过pix2pix来完成成对的图像转换(Labels to Street Scene, Aerial to Map,Day to Night等),可以得到比较清晰的结果。
先看一张效果图:

2. 方法

training procedure

训练大致过程如上图所示。图片 x 作为此cGAN的条件,需要输入到G和D中。G的输入是{x,z}(其中,x 是需要转换的图片,z 是随机噪声),输出是生成的图片G(x,z)。D则需要分辨出{x,G(x,z)}和{x,y}。

2.1 目标函数

一般的cGAN的目标函数如下,生成器 G 不断的尝试minimize下面的目标函数,而D则通过不断的迭代去maximize这个目标函数。


cGAN的目标函数

为了测试输入的条件x对于D的影响,论文也训练一个普通的GAN,判别器D只用于判别生成的图像是否真实。


GAN

前人的一些工作中发现,将GAN的目标函数和传统的loss结合,可以带来更好的效果。所以论文增加了一个L1 loss交给生成器G去最小化。

L1 loss

所以最终的目标函数是:


final objective

文中对于不同的loss的效果做了一个对比,可以看到L1 + cGAN的效果相对于只用L1或者cGAN都是比较好的。


different loss

2.2 网络结构
论文对DCGAN的生成器和判别器的结构做了一些改进。

2.2.1 生成器结构

U-Net

U-Net是德国Freiburg大学模式识别和图像处理组提出的一种全卷积结构。和常见的先降采样到低维度,再升采样到原始分辨率的编解码(Encoder-Decoder)结构的网络相比,U-Net的区别是加入skip-connection,对应的feature maps和decode之后的同样大小的feature maps按通道拼(concatenate)一起,用来保留不同分辨率下像素级的细节信息。U-Net对提升细节的效果非常明显,下面是文中给出的一个效果对比,可以看到不同尺度的信息都得到了很好的保留。
不同结构的G与不同的目标函数组合的效果对比

2.2.2 判别器结构

利用马尔科夫性的判别器(PatchGAN)
  pix2pix采用的一个想法是,用重建来解决低频成分,用GAN来解决高频成分。一方面,使用传统的L1 loss来让生成的图片跟训练的图片尽量相似,用GAN来构建高频部分的细节。

final objective

  另一方面,使用PatchGAN来判别是否是生成的图片。PatchGAN的思想是,既然GAN只用于构建高频信息,那么就不需要将整张图片输入到判别器中,让判别器对图像的每个大小为N x N的patch做真假判别就可以了。因为不同的patch之间可以认为是相互独立的。pix2pix对一张图片切割成不同的N x N大小的patch,判别器对每一个patch做真假判别,将一张图片所有patch的结果取平均作为最终的判别器输出。
  具体实现的时候,作者使用的是一个NxN输入的全卷积小网络,最后一层每个像素过sigmoid输出为真的概率,然后用BCEloss计算得到最终loss。这样做的好处是因为输入的维度大大降低,所以参数量少,运算速度也比直接输入一张快,并且可以计算任意大小的图。论文对比了不同大小patch的结果,对于256x256的输入,patch大小在70x70的时候,从视觉上看结果就和直接把整张图片作为判别器输入没有多大区别了:
patchGAN

3. 效果




4. 总结

优点:pix2pix巧妙的利用了GAN的框架来为“Image-to-Image translation”的一类问题提供了通用框架。利用U-Net提升细节,并且利用PatchGAN来处理图像的高频部分。
缺点:训练需要大量的成对图片,比如白天转黑夜,则需要大量的同一个地方的白天和黑夜的照片。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容