tensorflow断点续训

在进行神经网络训练过程中由于一些因素导致训练无法进行,需要保存当前的训练结果下次接着训练
全连接反向传播神经网络中,训练过程的代码如下:

saver = tf.train.Saver()

with tf.Session() as sess:
   init_op = tf.global_variables_initializer()
   sess.run(init_op)

   #加入断点续训功能
   ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
   if ckpt and ckpt.model_checkpoint_path:
      saver.restore(sess,ckpt.model_checkpoint_path)

   for i in range(STEPS):
      xs,ys = mnist.train.next_batch(BATCH_SIZE)
      _,loss_value,step = sess.run([train_op,loss,global_step],feed_dict={x:xs,y_:ys})
      if i % 1000 == 0:
         print("Ater {} training step(s),loss on training batch is {} ".format(step,loss_value))
         saver.save(sess,os.path.join(MODEL_SAVE_PATH,MODEL_NAME),global_step=global_step)

ckpt = tf.train.get_checkpoint_state(checkpoint_dir, latest_filename=None)

该函数表明如果断点文件夹中包含有效断点状态文件,则返回该文件。
checkpoint_dir:存储断点文件目录
latest_filename=None:断点文件的可选名称,默认为“checkpoint”

saver.restore(sess, ckpt.model_checkpoint_path)

该函数表示恢复当前会话sess,将ckpt中的值赋给w和b
sess:表示当前会话,之前保存的结果将被加载入这个会话
ckpt.model_checkpoint_path:表示模型的存储位置,不需要提供模型的名字,它会去查看checkpoint文件,看看最新的是谁,叫什么

其中:

MODEL_SAVE_PATH = './model/'
MODEL_NAME = 'mnist_model'

saver.save会在‘./model’中自动保存checkpoint文件,然后实现断点训练只需要在训练前添加下列代码即可
断点训练代码:

ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
    saver.restore(sess, ckpt.model_checkpoint_path)

原文链接

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容

  • 转自: https://www.cnblogs.com/andre-ma/p/8458172.html 【写在前面...
    CRonaldo1999阅读 3,402评论 0 5
  • Saver的用法 1. Saver的背景介绍 我们经常在训练完一个模型之后希望保存训练的结果,这些结果指的是模型的...
    Bruce_Szh阅读 1,683评论 0 0
  • 今年北方的雪来的格外的早,10月中旬雪就已经下了起来,我也已经好多年没有见过那种漫天洒落,而后整个村子一片银装素裹...
    唐夕阅读 139评论 0 0
  • 新的办公楼比原来那座楼里的设施差远了,条件简陋到什么程度呢?刚开始的几周,既没电脑也无电话;脸盆搁置在一张被淘汰了...
    杨爱民阅读 225评论 0 1
  • 不知从何时起,初登讲台时的满腔热情,在岁月的河流里已经消失殆尽,留下的只有那日复一日、年复一年的备课、上课、一次次...
    陕县2449杨天环阅读 155评论 0 0