Python 利用pandas对数据进行特定排序

背景

小编最近在处理hive表存储大小时,需要对每个表的大小进行排序,因通过 hadoop fs -du -s -h /path/table 命令获取的数据表大小,其结果是展示为人能直观理解的大小,例如 1.1T、1.9G、49.6M 等,如果想对这些表根据存储大小进行降序排列,利用pandas应该如何做呢?

表大小

小编环境

import sys

print('python 版本:',sys.version.split('|')[0])   
#python 版本: 3.11.5

import pandas as pd

print(pd.__version__)
#2.1.0

测试数据

这里仅列举10行数据,进行演示,小编真实的hive表有几万个


测试数据

函数概述

在pandas对数据进行排序主要使用 pandas.DataFrame.sort_values 方法

DataFrame.sort_values(by, *, 
                axis=0,   
                ascending=True, 
                inplace=False, 
                kind='quicksort', 
                na_position='last', 
                ignore_index=False, 
                key=None)

参数解释:

  • by :str or list of str
    用于排序的单个字段 或 多个字段组成的列表

  • axis:“{0 or ‘index’, 1 or ‘columns’}”, default 0
    排序时的轴向,0 表示行向排序(一行一行排序),1表示列向排序(一列一列排序),默认是 0,也就是Excel中经常使用的排序

  • ascending:bool or list of bool, default True
    升序、降序,默认是升序,也就是True,如果是False,则是降序
    注意:该参数需要和 上面的by参数要相对应

  • inplace:bool, default False
    是否原地更新排序的数据,默认是False,表示调用该方法后,会返回一个新的数据框

  • kind:{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, default ‘quicksort’
    进行排序时,指定的排序算法,默认是 quicksort,快速排序算法

  • na_position:{‘first’, ‘last’}, default ‘last’
    在排序的数据中,指定 NaN 的排序位置,默认是排在最后

  • ignore_index:bool, default False
    是否要忽略数据的索引,默认是 Fasle,不忽略,使用数据原本的索引

  • key:callable, optional
    排序之前使用的函数,该函数需要是矢量化的,也就是传入参数是 Series ,返回的结果也需要为 Series ,该函数会逐个用在被排序的字段上

    key参数

官方文档:
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html

完整案例

import pandas as pd

data=pd.read_excel('排序数据.xlsx',sheet_name='排序')

key_type={'T':1,'G':2,'M':3,'K':4}

data.sort_values(by=['大小2','大小1'],
                 ascending=[True,False],
                 key=lambda col: col.map(key_type) if col.name=='大小2' else col
                )
排序结果

历史相关文章


以上是自己实践中遇到的一些问题,分享出来供大家参考学习,欢迎关注微信公众号:DataShare ,不定期分享干货

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,284评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,115评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,614评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,671评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,699评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,562评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,309评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,223评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,668评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,859评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,981评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,705评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,310评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,904评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,023评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,146评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,933评论 2 355

推荐阅读更多精彩内容