PCA主成分分析学习笔记 + Matlab实现

综述

简书数学公式显示不全,可以看这里

PCA (Principal Component Analysis) 主成分分析是目前最常用的数据降维方法之一,主要思路是将n维的数据投影到k(n>k)维空间超平面(直线的高维推广)上面去,使得各个样本点到超平面的投影距离最小(欧式距离)且方差最大。

简单的理解就是你给一个人拍照,要选择什么方向拍才能体现这个人的最多特征,大概就是给这个人拍一个正面的全身照,才能保留这个人的最多图像信息。如果拍侧面照或者从头顶照得到的信息就会非常有限。

再举一个二维数据降维到一维的例子:图中各个颜色的X代表样本坐标点,可以看出相关性比较大(X1轴X2轴单位是inch与cm),所以我们可以找一条直线,将各个样本点投影到直线上,作为我们的一维数据。这里跟线性回归的差别是PCA要最小化点到直线的投影(L2 norm),而线性回归要最小化曼哈顿距离(L1 norm)

图片来源:Coursera

具体降维过程

  1. 将数据均值归一化。计算出所有特征的均值$\mu$并计算出$X_i=X_i-\mu$。如果特征是
    在不同的数量级上,我们还需要将其除以标准差 $σ^2$


  2. 计算协方差矩阵(covariance matrix)Σ sigma 根据协方差公式:
    $$Σ(A_1,A_2) = \frac{(x_i-\bar x)(y_i-\bar y)}{(n-1)}$$
    $$
    Σ =
    \left{
    \begin{matrix}
    0.616555556 & 0.615444444 \
    0.615444444 & 0.716555556 \
    \end{matrix}
    \right}
    $$
    或者在Matlab中使用


  3. 计算协方差矩阵 Σ 的特征向量(eigenvectors)$\overrightarrow v$ 与特征值(eigenvalues)λ
    根据M$\overrightarrow v$ = λ$\overrightarrow v$ 计算行列式|M-λI|=0可以得出
    $$
    \overrightarrow v =
    \left{
    \begin{matrix}
    -.735178656 & -.677873399 \
    .677873399 & -.735178656 \
    \end{matrix}
    \right}
    $$
    $$
    λ =
    \left{
    \begin{matrix}
    .0490833989 \
    1.28402771
    \end{matrix}
    \right}
    $$
    在 Matlab中可以使用函数

  • [V,D]=eig(A):求矩阵A的全部特征值,构成对角阵D,并求A的特征向量构成V的列向量。
  • [U,S,V] = svd(A):产生一个与X维度相同的对角矩阵S,并且降序排列非负对角元素。并且酉矩阵U和V使得X = USV
    其中svd是singular value decomposition奇异值分解,这里就不再赘述,详情可以看这里
  1. 保留特征值最大的k(n维数据降到k维)个值,并使用删减过的特征矩阵 * 均一化矩阵 = FearureVector * DataAdjust 得到一个 n×k 维度的矩阵
    最终结果

    如果使用SVD函数,返回的的 U 是一个具有与数据之间最小投射误差的方向向量构成的矩阵。如果我们希望将数据从 n 维降至 k 维,我们只需要从 U 中选取前 k 个向量,我们用 $U_{reduce}$ 表示,然后通过如下计算获得要求的新特征向量$z^{(i)}$
    $$z^{(i)} = U_{reduce}Tx{(i)}$$
  1. 最后可以使用${\sum_{i=1}^k λi\over \sum{i=1}^n λ_i}$ 来计算最终保留的方差比例。

代码实现

function [U, S] = pca(X)
%PCA Run principal component analysis on the dataset X
%   [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X
%   Returns the eigenvectors U, the eigenvalues (on diagonal) in S
%
[m, n] = size(X);
U = zeros(n);
S = zeros(n);
sigma = X' * X / m;
[U, S, X] = svd(sigma);
end

function Z = projectData(X, U, K)
%on to the top k eigenvectors
%   Z = projectData(X, U, K) computes the projection of 
%   the normalized inputs X into the reduced dimensional space spanned by
%   the first K columns of U. It returns the projected examples in Z.
%
Z = zeros(size(X, 1), K);
for i = 1:size(X,1)
  for k = 1:K
    x= X(i, :)';
    Z(i,k) = x' * U(:, k);
  end
end
end
%  Run PCA
[U, S] = pca(X_norm);
K = 100;
Z = projectData(X_norm, U, K);

数学证明

可以参考周志华的机器学习P229或者这里

总结

数据降维的意义与作用举例:

  • 数据压缩:可以提升机器学习算法效率与节省储存空间
  • 数据可视化:将数据降维到1-3维,更好地呈现数据
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352

推荐阅读更多精彩内容