2018-07-13

Graph Convolutional Network(GCN)微信公众号文章

Graph Convolutional Networks | Thomas Kipf | PhD Student @ University of Amsterdam
https://tkipf.github.io/graph-convolutional-networks/#fn3

图卷积网络(Graph Convolutional networks, GCN) 简述
https://zhuanlan.zhihu.com/p/38612863

Graph Convolutional Networks (GCNs) 简介 - AHU-WangXiao - 博客园
https://www.cnblogs.com/wangxiaocvpr/p/8059769.html

如何理解 Graph Convolutional Network(GCN)? - 知乎
https://www.zhihu.com/question/54504471

卷积神经网络不能处理“图”结构数据?这篇文章告诉你答案 | 雷锋网
https://www.leiphone.com/news/201706/ppA1Hr0M0fLqm7OP.html

深度学习在graph上的使用
https://zhuanlan.zhihu.com/p/27216346

专知 洛桑理工:Graph上的深度学习报告(附PPT下载)
https://mp.weixin.qq.com/s/Jt6CjMqNFEXWoL5pkLeVyw

新智元 Graph 卷积神经网络:概述、样例及最新进展
https://mp.weixin.qq.com/s/ZsnuY2ffUPbmCbBG-MnSyA

香港中大-商汤科技联合实验室AAAI录用论文详解:ST-GCN时空图卷积网络模型 https://mp.weixin.qq.com/s/GEbEDI-VDHPxCDW9SO7jtA

如何理解 Graph Convolutional Network(GCN)? - 知乎
https://www.zhihu.com/question/54504471

AAAI 2018 | 时空图卷积网络:港中文提出基于动态骨骼的行为识别新方案
https://mp.weixin.qq.com/s/uxawHWsVXMNOTLNthAL0vg

实现
tkipf/gcn: Implementation of Graph Convolutional Networks in TensorFlow
https://github.com/tkipf/gcn

yysijie/st-gcn: Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch
https://github.com/yysijie/st-gcn

浅析图卷积神经网络 - 简书
//www.greatytc.com/p/89fbed65cd04

《Graph Learning》| 图传播算法(上) - 简书
//www.greatytc.com/p/53b4a3584199

《Graph learning》| 图传播算法(下) - 简书
//www.greatytc.com/p/e7fb897b1d09

Advances in Deep Learning on Graphs
链接:https://pan.baidu.com/s/1mTqZQY85Oi0sW2jR7mohMA
密码:yfku

Semi-Supervised Classification with Graph Convolutional Networks
https://openreview.net/pdf?id=SJU4ayYgl

Modeling Relational Data with Graph Convolutional Networks
https://arxiv.org/abs/1703.06103

Inductive Representation Learning on Large Graphs
https://arxiv.org/abs/1706.02216

[1801.07606] Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
https://arxiv.org/abs/1801.07606

Eilene/spatio-temporal-paper-list: Spatio-temporal modeling 论文列表(主要是graph convolution相关)
https://github.com/Eilene/spatio-temporal-paper-list

How powerful are Graph Convolutions? (review of Kipf & Welling, 2016)
https://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容

  • 在 AlphaGo 对弈李世石、柯洁之后,更多行业开始尝试通过机器学习优化现有技术方案。其实对于实时音视频来讲,对...
    声网阅读 4,402评论 1 17
  • 碎片化学习,已经是成年人自我提升方式,我们不可能像孩子一样端端正正的坐在教室学习,碎片化学习指的不是学习碎片化,而...
    杨建真阅读 371评论 0 3
  • 一副扑克牌有54张,缺一张,整副牌就废了,通常情况下垃圾桶就是它最终的宿命,但是扔掉真的很可惜。 小孙教你全新的扑...
    爸比手工学堂阅读 288评论 0 0
  • 之前从未想过自己有一天可以跑全马,这个极具历史底蕴的运动肯定具有独特的魅力,当年那个将战争胜利消息带给马拉...
    2017太阳石阅读 384评论 0 0