(11)NMS与Soft-NMS

(1)NMS算法介绍

    物体检测是计算机视觉领域的一个经典问题,它为特定类别的物体产生检测边框并对其分类打分。传统的物体检测流程常常采用多尺度滑动窗口,根据每个物体类别的前景/背景分数对每个窗口计算其特征。然而,相邻窗口往往具有相关的分数,这会增加检测结果的假阳性。为了避免这样的问题,人们会采用非最大抑制的方法对检测结果进行后续处理来得到最终的检测结果。目前为止,非最大抑制算法仍然是流行的物体检测处理算法并能有效的降低检测结果的假阳性。

    在现有的物体检测框架中,每一个检测框均会产生检测分数,那么对于图片中的一个物体可能对应多个检测分数。在这种情况下,除了最正确(检测分数最高)的一个检测框,其余的检测框均产生假阳性结果。非最大抑制算法针对特定物体类别分别设定重叠阈值来解决这个问题。


NMS 计算过程

    传统的非最大抑制算法首先在被检测图片中产生一系列的检测框B以及对应的分数S。当选中最大分数的检测框M,它被从集合B中移出并放入最终检测结果集合D。于此同时,集合B中任何与检测框M的重叠部分大于重叠阈值Nt的检测框也将随之移除。非最大抑制算法中的最大问题就是它将相邻检测框的分数均强制归零。在这种情况下,如果一个真实物体在重叠区域出现,则将导致对该物体的检测失败并降低了算法的平均检测率(average precision, AP)。


含重叠区域的bbox

(2)Soft-NMS

    针对NMS存在的这个问题,我们提出了一种新的Soft-NMS算法,它只需改动一行代码即可有效改进传统贪心NMS算法。在该算法中,我们基于重叠部分的大小为相邻检测框设置一个衰减函数而非彻底将其分数置为零。简单来讲,如果一个检测框与M有大部分重叠,它会有很低的分数;而如果检测框与M只有小部分重叠,那么它的原有检测分数不会受太大影响。在标准数据集PASCAL VOC 和 MS-COCO等标准数据集上,Soft-NMS对现有物体检测算法在多个重叠物体检测的平均准确率有显著的提升。同时,Soft-NMS不需要额外的训练且易于实现,因此,它很容易被集成到当前的物体检测流程中。


算法修改部分

    假设我们对一个与M高度重叠的检测框bi的检测分数进行衰减,而非全部抑制。如果检测框bi中包含不同于M中的物体,那么在检测阈值比较低的情况下,该物体并不会错过检测。但是,如果bi中并不包含任何物体,即使在衰减过后,bi的分数仍然较高,它还是会产生一个假阳性的结果。因此,在使用NMS做物体检测处理的时候,需要注意以下几点:

    相邻检测框的检测分数应该被降低,从而减少假阳性结果,但是,衰减后的分数仍然应该比明显的假阳性结果要高。

    通过较低的NMS重叠阈值来移除所有相邻检测框并不是最优解,并且很容易导致错过被检测物体,特别是在物体高度重叠的地方

    当NMS采用一个较高的重叠阈值时,平均准确率可能会相应降低。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容