Python和R的异同(一)

<- 对应R, = 对应Python

  1. R语言基本数据结构是向量,支持向量化操作。Python不支持向量化
  2. R和Python都是面向对象编程的语言。所以不同的类都各自的方法

R的向量矩阵数组与Python的列表

R语言的核心是向量,向量内的数据类型必须相同,也就是mode只会输出一个结果,如果向量里存在不同数据类型,那么R会以数据损失最小的转换方法让最后结果保持一致。
比如说:

a <- c(1,2,3,4,5)
b <- c(1,2,'3',4, True)

a和b的mode肯定是不同,mode(a)的结果是numeric, mode(b)结果会是character.

R语言里的所有函数就支持向量化操作, 比如说数学运算符和各类函数

a + 1
[1] 2 3 4 5

R语言里面是没有标量的,标量被R当作一个元素的向量。Python里面的数据类型是可以单个存放的。所以从输出结果长的像角度上,Python和R语言的向量看起来相同的数据结构应该是列表(list)。list在Python里面序列类型,同类型的还有元祖(tuple)和范围(range)

a = [1,2,3,4,'b']

不过只是在结构上看起来相似,Python不支持向量化操作,所以企图直接a+1是会出错的,即便里面都是数值型数据

a = [1,2,3,4,5]
a + 1
# TypeError: can only concatenate list (not "int") to list
a + ['b','c']
# [1, 2, 3, 4, 5, 'b', 'c']

就我目前的眼界,能想到实现R语言那样的整体运算,在Python里面就是列表推导式了。

[i + 2 for i in a]

既然长的像,所以就要看看有哪些运算是共同的。

取值

虽然Python和R都可以用[]从数据结构中提取数据,但还是有很大区别。最最要的一个区别就是Python从0开始下标, R从1开始下标。

一维数据

提取一元数据时,如果只提取一个数据两者差不多是相同的;

# 提取第一个元素
## R
a <- c(1,2,3,4,5,6)
a[1]
## Python
a = [1,2,3,4,5,6]
a[0]

如果要提取多个数据就存在差异了。比如说Python就只能选取连续的几个值,要么分别取值。R语言可以在[]中提供一组包含位置信息的向量。R语言的[]可以存放Boolean向量,Python里面就需要用列表推导式,循环进行逻辑比较。

# R
a[c(1,3)]
a[which(a > 2)]
a[ a > 1 & a < 4]

# Python
a[1];a[3]
[i for i in a if i >1 and i <4]

但是一般而言,我们也不会专门选择几个数值,基本都是根据逻辑判断结果选择一组符合要求的数据。

多维数据

R语言的矩阵和数组结构有专门的结构,matrix和array,但是基础还是向量。在Python里则是通过列表嵌套的方式实现。

# R matrix 看作三个向量按列排
mdat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol = 3, byrow = TRUE,
               dimnames = list(c("row1", "row2"),
                               c("C.1", "C.2", "C.3")))

# Python matrix
 a= [[1,2,3],[4,5,6]]

# R 三维数组
d3 <- array(1:24, c(2,3,4))
# Python三维数组
d3 = [[[1,3,5],[2,4,6]],[[7,9,11],[8,10,12]],[[19,21,23],[20,22,24]]]

多维数据的提取和赋值也是有不大不小的区别,一个是[x,y,z],一个是[z][y][x]。R从里到外,Python从外到里(我是这样理解的)。尝试分别从Pyhon和R里面提取同一个数据

# R
d3[1,2,2]
d3[1,2,2] <- 0
# Python
d3[1][0][1]
d3[1][0][1] <- 0

如果想提取全部第二维度的数据

# R
d3[,,2]
# Python
d3[1]

函数

在函数用法上,两者的差异就真的是很大了。结果就是有段时间只用R,然后按照R的习惯用Python,基本上都出error。比如说对刚才的三维数据求和

# R
sum(d3)
# Ptyhon
sum(d3)
TypeError: unsupported operand type(s) for +: 'int' and 'list'

原因是R里面是向量化操作,直接对所有元素进行运算。在Python里面,sum函数会对list里面的各个元素进行求和, 而d3的内一层还是一个列表,所以就会出错了。
最直观的方法就是看看R和Python的多维数组的元素数量:

# R
length(d3) 
24
# Python
len(d3); d3.__len__()
3

因此R和Python的函数只能在一维上存在相似性,超过一维基本用一个错一个。

Python作为一门面向对象编程语言,对于每一种列都有专门的方法,这个方法可以用dir()进行查看。

在R里面dir()是用来查看当前目录下的文件。

dir(list)
['__add__', '__class__','__contains__',
 '__delattr__', '__delitem__', '__dir__', '__doc__',
 '__eq__', '__format__',  '__ge__', '__getattribute__',
 '__getitem__', '__gt__', '__hash__', '__iadd__',
 '__imul__', '__init__',  '__init_subclass__',
 '__iter__', '__le__',  '__len__', '__lt__',
 '__mul__', '__ne__',  '__new__', '__reduce__',
 '__reduce_ex__', '__repr__',  '__reversed__', '__rmul__',
 '__setattr__', '__setitem__',  '__sizeof__', '__str__',
 '__subclasshook__',  'append', 'clear',
 'copy',  'count', 'extend',
 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

所以Python里面经常会遇到d3.pop()这种调用类方法的形式。在R语言里则是函数的多态性,prin是其中一个多态性函数,它提供了一个接口,根据输入数据类型调用相应的函数

# R
print
# function (x, ...) 
# UseMethod("print")
# <bytecode: 0x000000001456fbf0>
# <environment: namespace:base>

可以用methods(print)看具体有那些具体函数。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,639评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,277评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,221评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,474评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,570评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,816评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,957评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,718评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,176评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,511评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,646评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,322评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,934评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,755评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,987评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,358评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,514评论 2 348

推荐阅读更多精彩内容