elasticsearch之八分词器

个人专题目录


1. 中文分词器 IK分词器

1.1 分词器 analyzer

什么是分词器 analyzer

分词器是一个字符串解析拆分工具。其作用是分析写入的Document中的文本数据field,并将field数据拆分成一个个有完整含义的、不可拆分的单词。

作用:切分词语,normalization(提升recall召回率)

给你一段句子,然后将这段句子拆分成一个一个的单个的单词,同时对每个单词进行normalization(时态转换,单复数转换)

recall,召回率:搜索的时候,增加能够搜索到的结果的数量

analyzer 组成部分:

  1. character filter:在一段文本进行分词之前,先进行预处理,比如说最常见的就是,过滤html标签(<span>hello<span> --> hello),& --> and(I&you --> I and you)

  2. tokenizer:分词,hello you and me --> hello, you, and, me

  3. token filter:lowercase,stop word,synonymom,dogs --> dog,liked --> like,Tom --> tom,a/the/an --> 干掉,mother --> mom,small --> little

一个分词器,很重要,将一段文本进行各种处理,最后处理好的结果才会拿去建立倒排索引。

内置分词器的介绍

要切分的语句:Set the shape to semi-transparent by calling set_trans(5)

standard analyzer - 是Elasticsearch中的默认分词器。标准分词器,处理英语语法的分词器。切分后的key_words:set, the, shape, to, semi, transparent, by, calling, set_trans, 5。这种分词器也是Elasticsearch中默认的分词器。切分过程中不会忽略停止词(如:the、a、an等)。会进行单词的大小写转换、过滤连接符(-)或括号等常见符号。

GET _analyze
{
 "text": "Set the shape to semi-transparent by calling set_trans(5)",
 "analyzer": "standard"
}

simple analyzer - 简单分词器。切分后的key_words:set, the, shape, to, semi, transparent, by, calling, set, trans。就是将数据切分成一个个的单词。使用较少,经常会破坏英语语法。

GET _analyze
{
 "text": "Set the shape to semi-transparent by calling set_trans(5)",
 "analyzer": "simple"
}

whitespace analyzer - 空白符分词器。切分后的key_words:Set, the, shape, to, semi-transparent, by, calling, set_trans(5)。就是根据空白符号切分数据。如:空格、制表符等。使用较少,经常会破坏英语语法。

GET _analyze
{
 "text": "Set the shape to semi-transparent by calling set_trans(5)",
 "analyzer": "whitespace"
}

language analyzer - 语言分词器,如英语分词器(english)等。切分后的key_words:set, shape, semi, transpar, call, set_tran, 5。根据英语语法分词,会忽略停止词、转换大小写、单复数转换、时态转换等,应用分词器分词功能类似standard analyzer。

GET _analyze
{
 "text": "Set the shape to semi-transparent by calling set_trans(5)",
 "analyzer": "english"
}

注意:Elasticsearch中提供的常用分词器都是英语相关的分词器,对中文的分词都是一字一词。

测试分词器

GET /_analyze
{
  "analyzer": "standard",
  "text": "Text to analyze 80"
}

返回值:

{
  "tokens" : [
    {
      "token" : "text",
      "start_offset" : 0,
      "end_offset" : 4,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "to",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "<ALPHANUM>",
      "position" : 1
    },
    {
      "token" : "analyze",
      "start_offset" : 8,
      "end_offset" : 15,
      "type" : "<ALPHANUM>",
      "position" : 2
    },
    {
      "token" : "80",
      "start_offset" : 16,
      "end_offset" : 18,
      "type" : "<NUM>",
      "position" : 3
    }
  ]
}

token 实际存储的term 关键字

position 在此词条在原文本中的位置

start_offset/end_offset字符在原始字符串中的位置

修改分词器的设置

启用english停用词token filter

PUT /my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "es_std": {
          "type": "standard",
          "stopwords": "_english_"
        }
      }
    }
  }
}

测试分词

GET /my_index/_analyze
{
  "analyzer": "standard", 
  "text": "a dog is in the house"
}

GET /my_index/_analyze
{
  "analyzer": "es_std",
  "text":"a dog is in the house"
}

定制化自己的分词器

PUT /my_index
{
  "settings": {
    "analysis": {
      "char_filter": {
        "&_to_and": {
          "type": "mapping",
          "mappings": ["&=> and"]
        }
      },
      "filter": {
        "my_stopwords": {
          "type": "stop",
          "stopwords": ["the", "a"]
        }
      },
      "analyzer": {
        "my_analyzer": {
          "type": "custom",
          "char_filter": ["html_strip", "&_to_and"],
          "tokenizer": "standard",
          "filter": ["lowercase", "my_stopwords"]
        }
      }
    }
  }
}

测试

GET /my_index/_analyze
{
  "analyzer": "my_analyzer",
  "text": "tom&jerry are a friend in the house, <a>, HAHA!!"
}

设置字段使用自定义分词器

PUT /my_index/_mapping/
{
  "properties": {
    "content": {
      "type": "text",
      "analyzer": "my_analyzer"
    }
  }
}

2. 中文分词器 IK分词器

  • IKAnalyzer 是一个开源的,基于 java 语言开发的轻量级的中文分词工具包
  • 是一个基于 Maven 构建的项目
  • 具有 60 万字 秒的高速处理能力
  • 支持用户词典扩展定义

2.1 Ik分词器安装使用

中文分词器

standard 分词器,仅适用于英文。

GET /_analyze
{
  "analyzer": "standard",
  "text": "中华人民共和国人民大会堂"
}

我们想要的效果是什么:中华人民共和国,人民大会堂

IK分词器就是目前最流行的es中文分词器

3. IK分词器安装

3.1 环境准备

Elasticsearch 要使用 ik,就要先构建 ik 的 jar包,这里要用到 maven 包管理工具,而 maven 需要java 环境,而 Elasticsearch 内置了jdk, 所以可以将JAVA_HOME设置为Elasticsearch 内置的jdk

1)设置JAVA_HOME

vim /etc/profile
# 在profile文件末尾添加
#java environment
export JAVA_HOME=/opt/elasticsearch-7.4.0/jdk
export PATH=$PATH:${JAVA_HOME}/bin

# 保存退出后,重新加载profile
source /etc/profile

2)下载maven安装包

wget http://mirror.cc.columbia.edu/pub/software/apache/maven/maven-3/3.1.1/binaries/apache-maven-3.1.1-bin.tar.gz  

3)解压maven安装包

tar xzf apache-maven-3.1.1-bin.tar.gz 

4)设置软连接

ln -s apache-maven-3.1.1 maven 

5)设置path

打开文件

 vim  /etc/profile.d/maven.sh

将下面的内容复制到文件,保存

export MAVEN_HOME=/opt/maven  
export PATH=${MAVEN_HOME}/bin:${PATH} 

设置好Maven的路径之后,需要运行下面的命令使其生效

source /etc/profile.d/maven.sh

6)验证maven是否安装成功

mvn -v

3.2 安装IK分词器

1)下载IK

wget https://github.com/medcl/elasticsearch-analysis-ik/archive/v7.4.0.zip

执行如下图:

2)解压IK

由于这里是zip包不是gz包,所以我们需要使用unzip命令进行解压,如果本机环境没有安装unzip,请执行:

yum install zip 
yum install unzip

解压IK

unzip v7.4.0.zip

3)编译jar包

# 切换到 elasticsearch-analysis-ik-7.4.0目录
cd elasticsearch-analysis-ik-7.4.0/
#打包
mvn package

4) jar包移动

package执行完毕后会在当前目录下生成target/releases目录,将其中的elasticsearch-analysis-ik-7.4.0.zip。拷贝到elasticsearch目录下的新建的目录plugins/analysis-ik,并解压

#切换目录
cd /opt/elasticsearch-7.4.0/plugins/
#新建目录
mkdir analysis-ik
cd analysis-ik
#执行拷贝
cp -R /opt/elasticsearch-analysis-ik-7.4.0/target/releases/elasticsearch-analysis-ik-7.4.0.zip      /opt/elasticsearch-7.4.0/plugins/analysis-ik
#执行解压
unzip  /opt/elasticsearch-7.4.0/plugins/analysis-ik/elasticsearch-analysis-ik-7.4.0.zip

5)拷贝辞典

将elasticsearch-analysis-ik-7.4.0目录下的config目录中的所有文件 拷贝到elasticsearch的config目录

cp -R /opt/elasticsearch-analysis-ik-7.4.0/config/*   /opt/elasticsearch-7.4.0/config

记得一定要重启Elasticsearch!!!

3.3 使用IK分词器

IK分词器有两种分词模式:ik_max_word和ik_smart模式。

1、ik_max_word

会将文本做最细粒度的拆分,比如会将“乒乓球明年总冠军”拆分为“乒乓球、乒乓、球、明年、总冠军、冠军。

#方式一ik_max_word
GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "乒乓球明年总冠军"
}

ik_max_word分词器执行如下:

{
  "tokens" : [
    {
      "token" : "乒乓球",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "乒乓",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "球",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 2
    },
    {
      "token" : "明年",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "总冠军",
      "start_offset" : 5,
      "end_offset" : 8,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "冠军",
      "start_offset" : 6,
      "end_offset" : 8,
      "type" : "CN_WORD",
      "position" : 5
    }
  ]
}

2、ik_smart
会做最粗粒度的拆分,比如会将“乒乓球明年总冠军”拆分为乒乓球、明年、总冠军。

#方式二ik_smart
GET /_analyze
{
  "analyzer": "ik_smart",
  "text": "乒乓球明年总冠军"
}

ik_smart分词器执行如下:

{
  "tokens" : [
    {
      "token" : "乒乓球",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "明年",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "总冠军",
      "start_offset" : 5,
      "end_offset" : 8,
      "type" : "CN_WORD",
      "position" : 2
    }
  ]
}

由此可见 使用ik_smart可以将文本"text": "乒乓球明年总冠军"分成了【乒乓球】【明年】【总冠军】

这样看的话,这样的分词效果达到了我们的要求。

ik分词器基础知识

ik_max_word: 会将文本做最细粒度的拆分,比如会将“中华人民共和国人民大会堂”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民大会堂,人民大会,大会堂”,会穷尽各种可能的组合;

ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国人民大会堂”拆分为“中华人民共和国,人民大会堂”。

ik分词器的使用

存储时,使用ik_max_word,搜索时,使用ik_smart

PUT /my_index 
{
  "mappings": {
      "properties": {
        "text": {
          "type": "text",
          "analyzer": "ik_max_word",
          "search_analyzer": "ik_smart"
        }
      }
  }
}

搜索

GET /my_index/_search?q=中华人民共和国人民大会堂

3.4 ik配置文件

ik配置文件

ik配置文件地址:es/plugins/ik/config目录

IKAnalyzer.cfg.xml:用来配置自定义词库

main.dic:ik原生内置的中文词库,总共有27万多条,只要是这些单词,都会被分在一起

preposition.dic: 介词

quantifier.dic:放了一些单位相关的词,量词

suffix.dic:放了一些后缀

surname.dic:中国的姓氏

stopword.dic:英文停用词

ik原生最重要的两个配置文件

main.dic:包含了原生的中文词语,会按照这个里面的词语去分词

stopword.dic:包含了英文的停用词

停用词,stopword

a the and at but

一般,像停用词,会在分词的时候,直接被干掉,不会建立在倒排索引中

自定义词库

(1)自己建立词库:每年都会涌现一些特殊的流行词,网红,蓝瘦香菇,喊麦,鬼畜,一般不会在ik的原生词典里

自己补充自己的最新的词语,到ik的词库里面

IKAnalyzer.cfg.xml:ext_dict,创建mydict.dic。

补充自己的词语,然后需要重启es,才能生效

(2)自己建立停用词库:比如了,的,啥,么,我们可能并不想去建立索引,让人家搜索

custom/ext_stopword.dic,已经有了常用的中文停用词,可以补充自己的停用词,然后重启es

3.5 使用mysql热更新 词库

热更新

每次都是在es的扩展词典中,手动添加新词语,很坑

(1)每次添加完,都要重启es才能生效,非常麻烦

(2)es是分布式的,可能有数百个节点,你不能每次都一个一个节点上面去修改

es不停机,直接我们在外部某个地方添加新的词语,es中立即热加载到这些新词语

热更新的方案

(1)基于ik分词器原生支持的热更新方案,部署一个web服务器,提供一个http接口,通过modified和tag两个http响应头,来提供词语的热更新

(2)修改ik分词器源码,然后手动支持从mysql中每隔一定时间,自动加载新的词库

用第二种方案,第一种,ik git社区官方都不建议采用,觉得不太稳定

步骤

1、下载源码

https://github.com/medcl/elasticsearch-analysis-ik/releases

ik分词器,是个标准的java maven工程,直接导入eclipse就可以看到源码

2、修改源

org.wltea.analyzer.dic.Dictionary类,160行Dictionary单例类的初始化方法,在这里需要创建一个我们自定义的线程,并且启动它

org.wltea.analyzer.dic.HotDictReloadThread类:就是死循环,不断调用Dictionary.getSingleton().reLoadMainDict(),去重新加载词典

Dictionary类,399行:this.loadMySQLExtDict(); 加载mymsql字典。

Dictionary类,609行:this.loadMySQLStopwordDict();加载mysql停用词

config下jdbc-reload.properties。mysql配置文件

3、mvn package打包代码

target\releases\elasticsearch-analysis-ik-7.3.0.zip

4、解压缩ik压缩包

将mysql驱动jar,放入ik的目录下

5、修改jdbc相关配置

6、重启es

观察日志,日志中就会显示我们打印的那些东西,比如加载了什么配置,加载了什么词语,什么停用词

7、在mysql中添加词库与停用词

8、分词实验,验证热更新生效

GET /_analyze
{
  "analyzer": "ik_smart",
  "text": "播客"
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容